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INTRODUCTION 

The rapid development of science and technology in the 

world, the constantly growing needs of mankind for goods with 

improved properties, as well as limited natural resources have 

led to the search for methods for obtaining new substances and 

materials with a given set of indicators. In Ukraine, in 2017-

2021, under the target scientific research program of the NAS of 

Ukraine “New functional substances and materials of chemical 

production”, modern scientific approaches were developed to 

create non-traditional materials with improved functional 

characteristics for various areas of practical application and to 

establish ways to control such properties [1]. Within the 

framework of the program, fundamental principles for obtaining 

substances and materials of a wide range of purposes based on 

new energy-saving environmentally friendly technologies for the 

needs of various industries and the social sphere have been 

developed: energy saving, micro- and nanoelectronics, transport, 

aircraft construction, agro-industrial complex, light and food 

industry, household chemicals, environmental protection, etc.  

Today, the improvement of the standard of living of 

society and its sustainable development is largely achieved 

thanks to scientific progress in chemical materials science, in 

particular in the creation of fundamentally new polymer 

composite materials. At the beginning of the 3rd millennium, 

composites have gained importance in a wide variety of areas 

of human activity, revolutionizing technology, everyday life 

and lifestyle. Their practical value is due to the nonlinearity 

and synergy of properties that provide an advantage over other 
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materials, namely: high thermal and corrosion resistance, low 

weight in combination with improved mechanical performance 

and low cost. Their areas of application have expanded from 

household goods (fabrics, textiles, knitwear, packaging, 

biomedical products) to high-tech products (for aerospace and 

military equipment, microelectronics, energy complex, 

metallurgy, construction, healthcare, a new generation of 

adsorbents for environmental protection). The possibilities of 

giving polymer products the desired characteristics are 

virtually unlimited thanks to a wide range of methods for their 

modification.  

One of the most effective is the introduction of various 

additives into composites, especially substances in the 

nanoscale. Natural or specially synthesized substances of 

different sizes, geometric structure and chemical nature are 

used as nanoadditives, which are selected taking into account 

the achievement of the desired characteristics of composites, 

their cost, the possibility of recycling, the impact on 

biodegradability, etc. A significant number of requirements for 

nanofillers are satisfied by natural layered aluminosilicates, 

silicas, carbon derivatives (nanofibers, nanotubes, fullerenes), 

metal nanoparticles (NPs), their oxides, etc. Their use allows 

you to regulate the characteristics of polymeric materials and 

give them a set of desired properties. Nanocomposites 

containing additives of natural or modified clay demonstrate a 

sharp improvement in strength and modulus of elasticity, heat 

and fire resistance, and gas permeability [2-4]. The 

introduction of carbon nanotubes (CNTs) expands the range of 

applications in a wide variety of areas: as reinforced and anti-
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corrosion materials, solar cells, chemical sensors, adsorbents, 

products for shielding from electromagnetic and microwave 

radiation, etc. [5-8]. Due to the unique graphitic structure and 

extraordinary biological properties, CNTs are of increasing 

interest in biomedicine (drug delivery, bioimaging, biosensor 

materials and tissue engineering) [7]. Synthetic fibers and 

threads containing noble metal or metal oxide nanoparticles in 

their structure acquire antimicrobial, anti-allergic, sorption and 

antistatic properties and protect against UV radiation [9-12]. 

The simultaneous use of two different or bicomponent 

nanoadditives is more effective. Polyvinyl alcohol nanofibers 

containing Ag/TiO2 nanoparticles exhibit antimicrobial and 

photocatalytic activity [13]. Polypropylene monofilaments with 

Ag/SiO2 nanoadditives have, along with bactericidal properties, 

high mechanical and manipulation characteristics [14]. 

Modification of polymers with nanoadditives also allows 

solving environmental and social problems [15-17]. 

Composites for water purification [15], new environmentally 

friendly adsorbents for environmental restoration [16,17], and 

materials for biomedical purposes [18] have been created based 

on biopolymers. The development and implementation of new, 

so-called “green” technologies allows recycling and using 

secondary polymers [19-21].  

In nanofilled composites of incompatible polymers, in 

addition to the concentration and chemical nature of additives, 

an important factor is their uneven distribution in the volumes 

of component phases, which significantly expands the 

possibilities of regulating heterogeneous morphology and 

makes mixed systems even more attractive. Under the 
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condition of selective localization of highly dispersed 

electrically conductive nanomodifiers in the interphase layer, 

the content of the additive necessary to reduce the percolation 

threshold is significantly reduced [22,23]. At the same time, the 

formation of a percolation mesh structure by carbon nanotubes 

in the polymer matrix also contributes to a significant increase 

in the elastic modulus. The addition of organoclay to the 

polyamide/polylactide (PA/PL) mixture caused a change in the 

type of PA structure in the matrix - from droplet-matrix to 

interwoven, as a result, the heat resistance and plasticity of the 

composite material increased without a negative impact on its 

stiffness and strength [24]. The preferential localization of 

aluminum and titanium oxide nanoparticles at the phase 

interface in the polypropylene/copolyamide (PP/SPA) and 

polyethylene terephthalate (PET)/PP mixtures, respectively, 

resulted in an improvement in the performance characteristics 

of composite yarns – an increase in their strength and 

dimensional stability due to a decrease in the diameters of in 

situ formed PP and PET microfibrils [25,26]. The effectiveness 

of nanoadditives in polymer mixtures increases with the 

introduction of substances that affect interfacial phenomena 

[27-29]. The addition of compatibilizers in the PP/SPA/CNT 

and PET/PP/TiO2 mixtures contributed to the improvement of 

their matrix-fibrillar structure – the average diameter of PP and 

PET fibrils decreased, and the uniformity of their distribution 

increased [27,28]. A significant increase in the tensile strength 

of biodegradable composites was achieved due to interfacial 

adhesion and the formation of a percolation network in the 
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matrix with the simultaneous use of organomodified 

montmorillonite and multilayer CNTs [29]. 

    Today, the number of created varieties of polymer 

composites exceeds the number of existing steels. At the same 

time, such materials are characterized by a longer service life 

of products, as well as a better price-quality ratio. The tendency 

to create new composites is constantly growing, despite the 

limited amount of natural raw materials, since only ~ 10% of 

petroleum products are spent on the production of all chemicals 

from oil, including monomers. 

In chemical technology, the main criterion for testing 

theoretical hypotheses remains the results of experiments, 

which are laborious and long-term. Thus, the development of 

new nanocomposites requires research aimed at establishing 

physicochemical factors that determine the compatibility and 

segregation of components, the formation of a 

microheterogeneous structure and the relationship with the 

operational characteristics of products based on them. An 

important task is to minimize the transition time from 

laboratory experiments to industrial samples. An effective 

means of increasing the efficiency of scientific research in 

solving problems of calculation, analysis, optimization and 

prediction of chemical and technological processes is the 

method of mathematical modeling of the experiment. The 

mathematical model is a response function that connects the 

optimization parameter characterizing the results of the 

experiment with the parameters that vary during the 

experiments. Response surfaces in multicomponent systems are 

complex and can be adequately described only by polynomials 
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of high degrees, which requires a significant number of 

experiments, since it is known that in a polynomial of degree n, 

coefficients are added from the number of components q. To 

accelerate research and increase the reliability of the results, we 

have developed computer programs that allow us to build plans 

for conducting experiments in the studied area of the factor 

space for any types of mixture systems and all possible 

combinations of ingredients in three- and four-component 

heterogeneous compositions [30-33]. With the help of the 

created programs, plans are built in an automated mode using 

three types of models of dependence of the output parameters 

on the content of components - incomplete cubic, cubic and 

quadratic, which establish the relationship between the content 

of ingredients and the properties of the system. Calculation of 

the coordinates of the points of the experimental plan is also 

carried out using software. To optimize the composition of the 

composition, software has been developed using the 

generalizing function of the Harrington criterion and using the 

penalty function method with the subsequent application of 

gradient descent with step fragmentation. Thus, the use of 

mathematical experimental planning using software will allow 

to accelerate the conduct of experiments dozens of times, 

sharply reduce their number and quickly identify the optimal 

variant of the studied process. 

Further scientific research into heterogeneous 

multicomponent systems using the developed software will 

contribute to the development of Ukraine's chemical complex 

and the production of modern polymer composite materials, the 

production and use of which in various industries will increase 



 9 

the competitiveness of domestic products in the domestic and 

foreign markets, significantly reduce the country's dependence 

on imported chemical products, and solve environmental and 

social problems through the introduction of "green" 

technologies.  
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 CHAPTER 1. COMPOSITE NANOFILLED 

SYNTHETIC FIBRE MATERIALS 

Since ancient times, fibers, fibrous materials and 

products made from them have played an important role in 

people's lives. Until the beginning of the 20th century, the raw 

materials for fibrous materials were natural fibers - wool, 

cotton, flax, hemp, silk. With the expansion of requirements for 

the performance characteristics of such materials, especially for 

technical products, there was a need to create alternative fibers 

and threads. Starting from the middle of the last century, the 

development of the science of synthetic polymers, their ability 

to transition to a viscous-fluid state and the ability to 

longitudinally deform a liquid jet flowing from the spinneret 

opening, determined the emergence and existence of the field 

of technology of fibrous materials, including chemical fibers. 

During this period, a group of so-called "classical" or 

"traditional" fibers was formed: polyamide, polyester, 

polyolefin, polyacrylonitrile, polyvinyl chloride and polyvinyl 

alcohol. Today, traditional fibers are subjected to targeted 

modification in order to improve or give them fundamentally 

new functional characteristics. For this purpose, various 

methods of modification are used, among which the most 

common are physical (consists in reducing the dimensional 

characteristics of individual filaments to micro- and nanosizes) 

and composite, in which fibers are formed from binary 

mixtures of polymers or with the introduction of various 

additives (dyes, flame retardants, compatibilizers, substances in 

the nanoscale, etc.). Due to this, fundamentally new types of 

fibers and fibrous materials have appeared - high-strength, 
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heat- and chemical-resistant, non-combustible, electrically 

conductive, sorption, ion-exchange. 

Composite materials include materials that consist of 

two or more substances that structurally complement each 

other and have properties that are absent in each individual 

component. The performance of composites depends on many 

factors: the chemical nature of the matrix and filler, volume 

fraction, degree of dispersion, orientation, uniformity of the 

distribution of additive particles, the size and properties of the 

transition layer, etc. Among them, the size of nanoparticles 

plays a dominant role. In accordance with the terminology 

adopted by IUPAC (International Union of Pure and Applied 

Chemistry), objects with a size not exceeding 100 nanometers 

are considered nanoparticles. They can be of various shapes - 

plates, tubes, spheroids, rods, while at least in one dimension 

their size must be in the range from 1 to 100 nm. Filled 

composite fibers and filaments in which at least one of the 

components has the specified dimensions are called nanofibers.  

Nanomaterials have always existed in nature in the form 

of composites filled with carbon black or natural clay, and have 

been used for many centuries. At the same time, they are new 

and little studied for materials science. The specificity of the 

characteristics of substances at the nanometer scale and their 

associated new unique properties are due to the fact that the 

dimensions of the structural elements of nanoobjects lie in the 

range (10-9÷10-7) m, have a complex internal organization, the 

ability to pack tightly, strong lateral (side) interactions, as well 

as a high surface area to volume ratio. The properties of 

nanocomposites are also largely determined by the size of the 
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transition layer at the filler/polymer phase interface. The 

interface, which is around the nanoparticle, has a finite 

thickness, within which the system parameters differ sharply 

from similar characteristics in the polymer volume. The 

experimentally determined thickness of the interfacial layer 

ranges from 0.004 to 0.16 mm and depends on the degree of 

affinity between the surface of the NPs and the functional 

groups of the macromolecules of the polymer matrix [34]. The 

chemical nature of the additives and their concentration 

significantly affect the interfacial phenomena and properties of 

composite fibrous materials.  

 1.1. Synthetic classical fibers and threads filled with 

nanoadditives of various chemical nature  

The increasing requirements for the quality and 

functional characteristics of fibers and threads lead to the 

search for methods of their modification in order to provide 

technical products and household goods made from them with 

a set of unique consumer properties. Modern textile materials 

for everyday and especially for special clothing must have high 

mechanical and hygienic indicators, as well as reliably protect 

a person from external negative factors (high and low 

temperatures, increased content of gases and emulsions of toxic 

substances, biological factors, electromagnetic radiation). 

Nano-filled industrial synthetic fibers obtained by 

processing melts or polymer solutions have been produced for 

more than 20 years. Nanoparticles of various chemical nature, 

size and configuration are used for their modification: carbon 

derivatives, natural minerals, metals, metal oxides, etc. In this 

case, NPs with the desired size, shape and functional properties 
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are selected from previously obtained ones or they are 

synthesized directly in the molding solution or on the surface 

of the finished fibers. Depending on the method of introducing 

nanoadditives, their content, dispersion and continuity of the 

structures that they form in the volume of the material, fibers 

with fundamentally new characteristics are obtained, which can 

be divided into bulk and surface. Bulk properties include 

mechanical, light, heat and electrical conductivity, density, etc. 

Surface properties are the sorption characteristics of fibers in 

relation to various substances (liquids, gases, ions, dyes), their 

catalytic activity, reflectivity, dyeing ability and other 

indicators that depend on the electronic structure of atoms 

located on the surface of the particles they form. 

The unusual structure of natural aluminosilicates and 

their inherent properties provide broad opportunities for the 

creation of a range of multifunctional polymer materials. The 

basis of clays are silicon and alumina ions, which form, 

respectively, tetrahedral and octahedral two-dimensional 

networks interconnected into layers (plates) with dimensions of 

~ (1000x1000x1) nm, which self-organize into packages with 

an interlayer space of up to 50 nm. The outer and inner 

surfaces of the plates are hydrophilic and polar, which 

promotes wetting and penetration into the space between the 

layers of both low- and high-molecular compounds that have 

polar groups in their structure. Due to this, layered silicates are 

the most effective modifiers for hydrophilic polymers [35]. The 

introduction of natural alumina particles into the structure of 

synthetic fibers from polar polymers provides high electrical 

and thermal conductivity, mechanical strength, chemical 
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activity, protection against UV radiation and fire [3,4,36]. 

Thus, in polyamide fibers containing 5.0 wt. % of alumina 

nanoparticles, the tensile strength and bending strength 

increase by 40 and 60 %, respectively. 

A more complex task is the modification of fibers 

based on non-polar or weakly polar polymers. In this case, the 

incompatibility of hydrophilic clays and hydrophobic 

polymers is the main problem, to solve which clays are pre-

modified in various ways: by ion exchange of clay cations for 

organic cations; by adsorption on the surface of water-soluble 

polymers, alkyl ketones, methyl acrylate, surfactants; by 

grafting organosilanes to the clay surface with the formation 

of Si-O-Si bonds; by introducing organic molecules capable 

of Van der Waals or ion-dipole interaction with the clay 

surface, etc. [2,35]. The nature of the packing of modifier 

molecules in the interlayer space determines the distance 

between silicate plates, the organophilicity of clays and, as a 

result, the structure of nanocomposites when mixed with 

polymers. Filling polypropylene fibers with organomodified 

alumina allows to eliminate their significant disadvantage as 

textile threads, namely the ability to dye. Fibers containing 

15.0 wt. % alumina are dyed with dyes of various classes to 

achieve deep tones, which significantly expands the areas of 

their application in the production of household materials. 

The discovery of carbon nanotubes (CNTs) in 1991 led 

to significant progress in the field of nanotechnology and 

marked a new era in the material world, including in the field 

of chemical fibers. Single- and multi-walled CNTs are 

characterized by a complex of unique mechanical, electrical, 
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thermal and chemical properties, as well as a high ability to 

transport electrons. The elastic modulus of carbon nanotubes 

approaches the values of this indicator for diamond (1.0 and 

1.2 TPa, respectively), their strength is 100 times higher than 

the best samples of steel. They are also characterized by high 

electrical conductivity, thermal stability (up to 2800 0 C in 

vacuum), thermal conductivity (approximately twice as high as 

that of diamond). The elasticity of multi-walled CNTs can 

reach 5000 GPa, they bend like a straw, but do not break and 

can straighten without damage [5]. Due to their ultra-high 

mechanical properties, single- and multi-walled carbon 

nanotubes are a particularly attractive reinforcing filler. The 

strength and Young's modulus of polypropylene fibers are 

increased by almost 3 times when 5.0 vol. % of CNTs are 

introduced into their structure, provided that they are 

additionally oriented [37]. Polyvinyl alcohol fibers filled with 

nanotubes are 120 times stronger than steel wire and 17 times 

lighter than Kevlar fiber. The introduction of (0.5÷3.0) wt. % 

of CNTs into the melt of polypropylene of different grades 

provides an increase in the tensile strength of monofilaments 

(P) and their dimensional stability (estimated by the value of 

the initial modulus E) in the entire range of additive 

concentrations [38]. The dependences of P and E on the CNT 

content are extreme: maximum values are achieved when 0.5 

wt. % of the additive is introduced. The best mechanical 

characteristics are possessed by monofilaments formed from 

PP with lower viscosity, which may be associated with a 

thinner and more uniform dispersion of CNTs in the melt. 

Adding nanotubes to synthetic fibers in an amount of 5 to 20 
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wt. % provides them with electrical conductivity at the level of 

copper wire and chemical resistance to the action of many 

reagents [39]. To date, a significant problem in creating high-

performance polymer/CNT composites is the difficulty of 

uniform dispersion and orientation of nanotubes in the matrix. 

The new method of “layer-by-layer planting” proposed by the 

authors [40] allowed the formation of polyvinyl alcohol fibers 

with adjustable CNT orientation, as a result of which the 

reinforcement effect increased sharply – the strength of the 

fibers increased from 50 to 1255 MPa, and their electrical 

conductivity also increased. The formation of a percolation 

network by carbon nanotubes in the polymer matrix provides 

an increase in thermal, optical, and electrical parameters even 

at an additive concentration of 0.0025 wt. % [6].  

     Effective modifiers are also nanoparticles of metals 

(Ag, Cu, Ti, Mn, Zn, Au, Pt, Pa) and metal oxides. Fibrous 

materials with additives of copper, nickel and silver NPs 

exhibit sorption and biocatalytic properties, with platinum 

inclusions they are catalytically active, and nickel-, iron- and 

cobalt-containing ones acquire magnetic characteristics [10,41-

44]. The introduction of zinc oxide NPs in the form of 

nanorods into polypropylene fibers improves their mechanical 

performance [11]. Polyester textile threads filled with ТiO2, 

Al2O3, ZnO and MgO nanoparticles exhibit photocatalytic 

activity, protection from UV radiation, antistatic properties, 

and abrasion resistance [12,13]. Modification of synthetic 

fibers with TiO2 and ZnO nanoparticles gives products made 

from them the ability to self-clean like plant leaves, insect 

wings, etc. The introduction of aluminum oxide nanoparticles 
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[25] and silicas with different specific surface areas [45] into 

their structure contributes to the improvement of the 

mechanical properties of polypropylene monofilaments. The 

use of combined nanoadditives enhances the modifying effect 

and expands the spectrum of operational characteristics of 

fibers and products based on them. The introduction of 

silver/silica [14], silver/alumina [46], and mixed oxide 

TiO2/SiO2 [47] into the structure of PP monofilaments gives 

them biological activity and improves mechanical properties. 

Nanosized silicon dioxide in the structure of synthetic fibers 

prevents pollution and promotes self-cleaning of products 

made from them, and the bifunctional additive TiO2/SiO2 

makes it possible to create a new generation of effective 

nanofilled materials for cleaning technological environments, 

including the medical industry [48]. In terms of their sorption 

performance, they exceed ion exchange resins, while being 5 

times cheaper than them. Such nanocomposites absorb a wide 

range of metal ions from water, destroy organic compounds, 

concentrate and separate radionuclides. 

 1.2. Nanofilled composite yarns and fine-fiber 

materials from melts of polymer blends  

 Polymer blending is a simple and affordable way to 

obtain new composite fibrous materials with predicted 

properties and is more effective than the synthesis of new 

monomers and polymers. Blends can be fully compatible or 

incompatible and partially compatible. In this case, various 

types of polymer dispersions occur - from simple binary to the 

formation of block copolymers, interpenetrating networks, 

microfibrillar or droplet structures, molecular composites, etc. 
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[3,49]. The formed types of phase morphologies determine the 

properties of such systems. Of particular interest are mixtures 

in which a component of the dispersed phase forms micro- or 

nanofibrils in the matrix of another. In the threads obtained 

from them, a self-reinforcing effect occurs, the degree of which 

can be regulated by changing the ratio of the sizes of the 

reinforcing fibers. By increasing the length or decreasing the 

diameter of the microfibrils, the mechanical properties of 

microfibrillar composites  (MFC) can be significantly 

improved [50]. The process of obtaining  MFC includes three 

main stages: extrusion mixing of melts of two polymers with 

different melting points  (Tmp)  and formation of an extrudate or 

monofilament; their cold drawing for longitudinal orientation 

and fibrillation of both phases; subsequent heat treatment at a 

temperature in the range between the Tmp of the mixture 

components, which ensures the formation of an isotropic 

matrix. 

 A schematic representation of the stages of the MFC 

production process is shown in the figure 1.1 [51]. Threads 

with a microfibrillar structure have a number of advantages 

over traditional ones: increased strength and resistance to 

deformation, relative ease of production and further processing, 

reduced weight, etc. 
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Fig. 1.1 – Scheme of formation of microfibrillar composites 

 
           Today, the  in situ  formation of micro- or nanofibrils of 

one component in the matrix of another has been implemented 

for many pairs of polymers by extrusion [3,26-28,52-60], 

blowing [61,62], uniaxial stretching [63] and 3D molding 

[1,64,65]. Regulation of microfibrillar morphology (reduction 

of fibril diameters, increase in their length and mass fraction) is 

achieved by introducing special substances into the mixture of 

incompatible polymers - compatibilizers [66], nanoadditives 

[25-27,47,57,60,65] or their compositions [28,67,68]. It is 

known that the properties of composite monofilaments largely 

depend on the type of structure formed by the polymer of the 

dispersed phase in the matrix. In this case, the formation of 

morphology is determined by the course of a number of 

microrheological processes that occur with droplets of the 

dispersed phase during the flow of the melt, namely: their 

dispersion, coalescence, deformation and migration. The 

    Fibrillation 
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degree of manifestation of each of them depends on the ratio of 

the main ingredients of the mixture, the content of the additive 

and its influence on the rheological properties of the 

components and the course of interfacial processes. The 

modifying effect of fillers on the structure of three- and four-

component systems is manifested in a change in the ratio of 

viscoelastic properties of the ingredients, a decrease in the 

value of interfacial tension and an increase in the stability of 

liquid cylinders (fibrils). Nanoadditives in the melt of 

thermodynamically incompatible mixtures play a dual role. 

First, due to the compatibilizing effect in modified systems, the 

degree of dispersion of the fiber-forming polymer and the 

kinetic stability of the melts increase, and the processes of 

droplet aggregation are inhibited, which contributes to 

obtaining a finer morphology. Secondly, NPs give fibrous 

materials unique properties inherent in substances in the 

nanoscale. 

1.2.1. Nanofilled composite threads with microfibrillar 

structure. One of the most studied systems for obtaining 

threads with increased initial modulus and tensile strength are 

blends of polyethylene terephthalate (PET) with polyolefins 

(PO) or with polyamides (PA), since polyester fibers are 

characterized by high resistance to deformation, which makes 

them an ideal reinforcing element. The formation of PET 

microfibrils in a PO and PA matrix allowed to significantly 

increase the dimensional stability of the threads and obtain a 

high-strength tire cord. Studies of the morphology and 

mechanical properties of composite threads based on PET/PP 

blends filled with titanium oxide nanoparticles showed that the 
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morphometric characteristics of the fibrillated PET phase, 

namely their diameter and length and distribution uniformity, 

depend on the concentration and size of the filler nanoparticles 

[26,28]. At a titanium oxide NP content of 4.0 wt. % the 

average diameter of microfibrils decreases from 5.4 μm to 1.1 

μm, and the range of diameters narrows from (2.0÷9.2) to 

(0.6÷4.5) μm compared to the original mixture. At the same 

time, their length also increases. The change in the structure of 

the threads caused an increase in the modulus and tensile 

strength by 1.4 and 1.3 times, respectively.  

The possibility of controlling the process of PP 

microfibril formation in the SPA matrix by introducing into the 

melt of the PP/SPA mixture of 30/70 wt. %  nanoparticles of 

oxides of various metals was shown by us in the works 

[25,69,70]. As can be seen from the microphotographs of 

cross-sections of extrudates of PP/SPA/aluminum oxide 

mixtures shown in Fig. 1.2, in the initial mixture PP is roughly 

dispersed in the SPA matrix. The introduction of          

(0.1÷3.0) wt. % Al2O3  nanoparticles into the system 

contributes to improving the compatibility of components at 

the phase interface and causes an increase in the degree of 

dispersion and uniformity of distribution of polymer particles 

of the dispersed phase in the dispersion medium. The 

modifying effect is achieved due to the compatibilizing 

(emulsifying) action of aluminum oxide nanoparticles, as 

evidenced by the decrease in the interfacial tension in 

nanofilled mixtures [70]. 
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Fig. 1.2 – Microphotographs of cross-sections of extrudates of mixtures with 
different aluminum oxide contents, wt. %: a) 0; b) 0,1; c) 0,5; d) 1,0; e) 3,0 

 
Microscopic studies of longitudinal sections of 

extrudates (Fig. 1.3) and residues of the dispersed phase after 

extraction of the matrix polymer (Fig. 1.4) indicate that 

aluminum oxide nanoparticles do not prevent droplets of the 

dispersed phase from deforming and merging with the 

formation of liquid jets (microfibrils) of PP in the SPA matrix.  
 

  a)   

 a)  b) 

 c)  d) 

 e) 
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Fig. 1.3 – Micrograph of a longitudinal section of a PP/SPA/ Al2O3 

extrudate with a nanoadditive content of 1.0 wt. % 
 
During the treatment of extrudates with a solvent selective for 

PP, the copolyamide goes into solution, and the dispersed 

phase remains mainly in the form of a bundle of microfibrils 

(Fig. 1.4). Microscopic studies of the influence of the 

concentration of aluminum oxide NPs on the dimensional 

characteristics of different types of polypropylene structures 

indicate that, along with microfibrils, a small number of films 

and micron-sized particles are also formed. Microfibrils are the 

predominant type of structure in extrudates of the original and 

nanofilled mixtures. When aluminum oxide NPs are added, the 

diameter of the microfibrils decreases, and their mass fraction 

increases in the entire concentration range. At the same time, at 

a nanoadditive content of 1.0 wt. %, the average diameter of 

the microfibrils decreases to 2.2 μm (versus 4.0 μm for the 

original mixture), and their fraction increases to almost 95%. 

This is due to the increased resistance of nanofilled microfibrils 

of smaller diameters to decay, as evidenced by a decrease in 
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the value of the instability coefficient and an increase in their 

lifetime [70]. 
 

                   
 

Fug. 1.4 –  Electron micrograph of dispersed phase (PP) structures after 

matrix polymer (CPA) extraction 
 

 The studies performed showed that the introduction of 

aluminum oxide NPs into the melt of the PP/SPA mixture not 

only does not complicate their processing, but even increases 

the stability of the formation and thermal orientation drawing 

of modified monofilaments. It is known that during the 

spinneret and thermal orientation drawing process, further 

deformation of the dispersed phase structures occurs, while the 

microfibrillar morphology in the monofilaments is preserved 

(Fig. 1.5) [59].  
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Fig. 1.5. Electron micrographs of polyoxymethylene microfibrils (at various 

magnifications) formed in situ in ethylene vinyl acetate copolymer 
 
Important indicators of the threads, from the point of 

view of further processing and the quality of products based on 

them, are mechanical characteristics. The tensile strength and 

modulus of elasticity of composite monofilaments from 

nanofilled systems are improved, compared with the threads 

from the original mixture (Table 1.1). This is natural, since in 

the PP/SPA/Al2O3 mixture a matrix-fibrillar morphology is 

formed, that is, the effect of self-reinforcing the threads takes 

place. In this case, the modifying effect depends on the 

concentration of the nanoadditive: an increase in the content of 

aluminum oxide NPs from 0.1 to 1.0 wt. % is accompanied by 

an increase in the strength and dimensional stability of the 

threads, and at a concentration of 3.0 wt. % the values of  P 

and E decrease. The degree of increase in the mechanical 

 a)  b) 

 c)  d) 
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indicators of the monofilaments correlates with the 

morphology of the extrudates and the dimensional 

characteristics of PP microfibrils. Their minimum diameter and 

maximum proportion in the structure determine the highest 

values of strength and resistance to deformation of 

monofilaments formed from a mixture containing 1.0 wt. % 

alumina. 
 
Тable 1.1 – Effect of aluminum oxide nanoparticle content on 

mechanical properties of composite monothreads  
 

Name of 
polymer, 

mixture 

Content of 
Al2O3, wt. 

% 

Extrac-
tion 

multipli-

city 

Strength, 
MPa 

Elastic 
modulus 

MPa 

Elonga-
tion, % 

СPА 0 6,0 270 3240 13,7 

PP 0 7,2 390 4970 8,9 

PP/С{А 0 4,0 310 3870 14,6 

PP/СPА 0,1 4,3 360 3910 14,0 

PP/СPА 0,5 4,5 390 4100 13,8 

PP/СPА 1,0 5,0 430 4520 12,1 

PP/СPА 3,0 5,0 390 4150 11,9 
 
The obtained result is consistent with our previous conclusion 

that the values of P and E reach maximum values when the 

entire polymer of the dispersed phase forms microfibrils [59]. 

Recent studies have shown that the most effective is the 

combined use of substances in the nanostate and traditional 

compatibilizers [27-29,71,72]. Thus, it was shown that for an 

incompatible PP/PA mixture, there was a synergistic effect on 

the morphology of the nanodispersed additive (hydrophobic 

silica NPs) and the compatibilizer (polypropylene with grafted 

maleic anhydride PPgMA): the addition of PPgMA provided a 



 27 

12-fold reduction in the size of polyamide droplets, and when 

used simultaneously with a nanoadditive – 25-fold [71]. The 

introduction of polystyrene additives with grafted maleic 

anhydride (PSgMA) into the PS/PA/CNT mixture allowed to 

increase the uniformity in size and geometric shape of 

polystyrene droplets and the mechanical properties of 

composites [72]. Modification of the CNT surface with a 

surfactant ionic liquid promoted the formation of a percolation 

network structure by nanotubes in the polymer matrix, as a 

result of which the electrical characteristics of composites 

based on PS/butylene adipate and terephthalate copolymer 

mixtures were dramatically improved. In this case, double 

percolation occurred, and the formation of a network structure 

by nanotubes also caused a significant increase in the elastic 

modulus. Biodegradable biological materials with improved 

mechanical properties were obtained by simultaneously using 

multilayer CNTs and organomodified montmorillonite - a 

synergistic effect was achieved with a content of 0.5 wt. % of 

nanoadditives [29]. Simultaneous introduction of two 

compatibilizers into the PP/SPA mixture made it possible to 

implement a microfibrillar structure in compositions with a 

ratio of components corresponding to the phase change region 

(40/60 and 50/50 wt. %) [66]. The authors [28] showed that the 

simultaneous use of a nanodispersed additive (ТiO2) and a 

compatibilizer (PPgMA) in PP/PET blends is the most 

effective and provides maximum improvement in the 

mechanical properties of composite yarns by increasing the 

length and minimizing the diameter of PET fibrils in the 

polypropylene matrix.  
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Systematic studies on the possibility of controlling the 

process of microfibrillar structure formation in melts of 

thermodynamically incompatible polymer mixtures by 

introducing compatibilizer/nanoadditive compositions and 

establishing the structure–property relationship of fibrous 

materials have been conducted at KNUTD for many years 

[27,32,47,59,67,68]. Thus, carbon nanotubes and PPgMA 

compatibilizer were used to modify a PP/SPA mixture of 20/80 

wt. %. The mechanical properties of monofilaments formed 

from the original polymers and modified mixtures are 

presented in Table 1.2 [27]. As can be seen from Table 1.2, the 

introduction of 20 wt. % of stronger PP into the copolyamide 

leads to an improvement in the mechanical performance of 

monothreads. The tensile strength and initial modulus of 

monofilaments, in the structure of which there is a nanofiller or 

compatibilizer, also increase. In all the studied mixtures, 

polypropylene forms in situ microfibrils in the SPA matrix and 

provides self-reinforcement of the threads.  

Тable 1.2 – The effect of modifier additives on the mechanical 

properties of monofilaments  
 

Sample name 
Linear 

density, 

text 

Strength 

MPa 

Elastic 
modulus 

MPa 

Elonga-
tion, % 

PP 5,6 370 2600 9,4 

СPА 7,3 210 3240 20,9 

PP/СPА 8,1 260 3870 15,6 

PP/СПА/PPgМА 9,1 320 3750 17,3 

PP/СПА/CNТ 11,0 340 4680 20,1 

PP/СPА/CNT/ 

PPgМА 
10,3 390 5110 19,8 
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The addition of compatibilizer and carbon nanotubes 

contributes to the reduction of microfibril diameters and the 

proportion of unwanted structures (particles, films), resulting in 

an increase in the strength and initial modulus of 

monofilaments. The maximum improvement in the mechanical 

properties of composite monofilaments occurs with the 

simultaneous addition of CNTs and PPgMA, which 

corresponds to the most perfect microfibrillar structure: the 

average diameter is 1.5 μm (versus 2.6 μm for the original 

mixture) and the proportion of films, the presence of which is 

known to worsen the mechanical properties of the filaments, is 

sharply reduced [59].  

The possibility of controlling the process of self-

reinforcing composite yarns from a PP/PVA blend by 

simultaneously introducing a nanofiller and a compatibilizer is 

shown in [67]. Quantitative microscopic studies of the effect of 

a nanodispersed silver/silica additive, a sodium oleate 

compatibilizer (С18Н33О2Na) or their combination on the 

microstructure of PP/PVA extrudates indicate that individual 

substances and their binary composition have an emulsifying 

effect on the melt and allow regulating its morphology. In 

modified compositions, the average diameter of microfibrils (đ) 

decreases and their mass fraction increases, and the number of 

other types of structures decreases (Table 1.3). In this case, the 

simultaneous use of a nanofiller and a compatibilizer is more 

effective. 
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Тable 1.3 – The influence of additives silver/silica, sodium 

oleate or their compositions on the characteristics of structure 

formation processes in melts of PP/PVA blends  
 

Name of the mixture, 

content of components, 

wt. % 

Microfibrils 

Content of 
structures of 
other types, 

wt. % 

đ, μm 
conten
t, wt. 

% 

Parti-
cles 

films 

PP/PVA,  30/70 3,5 86,5 3,9 9,6 

PP/PVA /Ag/SiO2,  30/70/1 1,6 90,6 3,3 6,4 

PP/PVA /С18Н33О2Na, 30/70/3 1,4 92,7 3,6 3,7 

PP/PVA /Ag/SiO2 /С18Н33О2Na 

30/70/1/3 
1,1 97,9 1,2 0,9 

  
As can be seen from Table 1.3, the diameter of microfibrils in 

the four-component mixture decreases by 3.2 times, while 

when adding 1.0 wt. % Ag/SiO2  nanoparticles or 3.0 wt. % 

sodium oleate, đ decreases by 2.2 and 2.5 times, respectively. 

In the presence of two modifiers, migration processes are 

significantly slowed down, which leads to a sharp drop in the 

number of films.  

 Studies of the mechanical properties of composite 

monofilaments show that they also indirectly correlate with the 

microstructure formed by the polymer of the dispersed phase in 

the matrix (Table 1.3, 1.4). The highest indicators of strength 

and resistance to deformation are those of threads formed from 

a composition modified with a nanofiller and a compatibilizer 

simultaneously. In this case, polypropylene is present in the 

PVA matrix mainly in the form of thinner microfibrils, and the 

proportion of films is reduced by almost 10 times.  
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Тable 1.4 – The effect of silver/silica, sodium oleate or their 

compositions on the mechanical characteristics of composite 

monofilaments from a PP/PVA blend 
 

Name and composition of the 

mixture, wt % 

Tex Tensile 

strength, 

MPa 

Initial 

modulus

, MPa 

Elongati

on, % 

PP/PVA, 30/70 8,1 300 4200 9,3 

PP/PVA /Ag/SiO2 ,  30/70/1 7,4 390 4800 13,0 

PP/PVA /С18Н33О2Na,  30/70/3 7,2 470 5300 8,5 

PP/PVA /Ag/SiO2 /С18Н33О2Na, 
30/70/1/3 

7,0 550 6400 8,0 

 
Thus, the maximum self-reinforcing effect of composite 

filaments formed from compatibilized nanofilled incompatible 

polymer blends is the result of improving their matrix-fibrillar 

structure.  

1.2.2. Nanofilled fine-fiber materials derived from 

microfibrillar composites. Today, there are a number of 

methods for producing fine-fiber materials with micro- and 

nano-sized diameters: aerodynamic spraying of the melt with a 

jet of compressed air [73-75], electroforming from a polymer 

melt or solution under the action of electrostatic forces [76-80], 

and processing of melts of mixtures of thermodynamically 

incompatible polymers into composites with a micro- and 

nanofibrillar structure [57-65,81-86]. 

  Aerodynamic forming produces nonwoven materials 

(NM) with fiber diameters of (1.0-20.0) μm. With the 

maximum increase in air velocity during polymer melt 

blowing, NM were formed from nanofibers with an average 

diameter of ~ 500 nm [75]. Electroforming produces nanofiber 

sheets with individual filament diameters of 10 nm or more, 
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but the use of this method is limited by low productivity and 

high toxicity of solvents. In order to give nonwoven materials 

new properties (for example, increasing filtration efficiency 

and reducing hydraulic resistance of filter materials), they are 

obtained on the basis of micro- and nano-sized fibers by 

combining blowing and electrospinning methods [76,79], but 

the production of such materials is complicated by the 

incompatibility of the forming speeds in both methods. In 

recent years, needle-free electrospinning technology has been 

developed, which can eliminate the shortcomings of traditional 

electroforming devices, such as low productivity, non-

uniformity of sheets in thickness, limited size, and difficulty in 

cleaning a single needle [80]. The developed needle-free 

electrospinning apparatus can be used for the industrial 

production of nanofiber membranes of considerable width.  

By processing melts of thermodynamically incompatible 

polymer mixtures for which microfibrillar morphology is 

realized, fine-fiber materials are obtained in the form of 

complex threads, staple fibers or nonwovens, in which 

individual filaments have micro- or nanosizes [57-65,81-87]. 

The structure of the composite monofilament or film, which 

comes out of the molding hole, is a continuous phase of the 

dispersion medium filled with thin jets (fibrils or microfibers). 

After extraction of the matrix from the composites with a 

solvent inert to the polymer of the dispersed phase, bundles of 

micro- and nanofibers or nonwoven webs from them remain. 

Fig. 1.6 shows a micrograph of polypropylene microfibrils with 

an average diameter of (1.5÷2.5) μm after dissolution of 

copolyamide from the composite strand [64]. 
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Fig. 1.6. Electronic microphotograph of PP microfibrils after 

extraction of SPA from the strand 
 

By forming a jet on a capillary viscometer with subsequent 

thermal drawing from the melt of a polybutylene 

terephthalate/polypropylene (PBTE/PP) mixture, PBTE 

nanofibers with a diameter of 600 nm and a length of 100 μm 

were obtained [88]. By processing polyethylene terephthalate 

(PET)/PP [26] and polytetrafluoroethylene/polylactide 

(PTFE/PL) [86] compositions by extrusion, PET microfibrils 

with diameters of (2.0÷9.2) μm and PTFE nanofibers with 

diameters of (100÷500) nm were formed. Nonwoven material 

from polypropylene microfibers was obtained after extraction 

of the matrix polymer from composite films formed from the 

melt of a PP/SPA mixture on a worm press through a flat-slot 

head of the “fishtail” type [57]. The microfibers had diameters 

ranging from tenths of a micrometer to several micrometers, 

were of practically continuous length, and were oriented in the 

direction of extrusion. By processing mixtures consisting of 

two polymers of the dispersed phase and the matrix, a 
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nonwoven material with a bimodal distribution of fibers by 

diameter was obtained [61]. Nonwoven fabrics were formed 

from mixtures in which the matrix polymers were polystyrene 

(PS) or polyethylene oxide (PEO), and the dispersed phase was 

polyethylene (PE) and polyamide 6, by the blowing method. 

After dissolving PS with tetrahydrofuran and PEO with water, 

a fine-fiber material with an average diameter of PA6 

microfibers ~ 9.0 μm and PE nanofibers ~ 600 nm was 

obtained.   

1.2.2.1.  Nanofilled complex microfibrillar threads.  

Modification of the properties of synthetic fibers and threads 

by reducing the diameters of filaments to micro- and nano-

sizes and introducing nano-additives into their structure is one 

of the most promising areas in the field of chemical fiber 

technology, as it allows significantly improving the quality of 

products and reducing the material intensity of production. 

Materials from ultrafine fibers retain all the positive properties 

inherent in products from traditional synthetic fibers: strength, 

high dimensional and wear resistance. At the same time, due to 

the very small diameter of individual filaments in textile 

products from them, many air voids can form. Thanks to them, 

free air exchange occurs between human skin and the external 

environment, i.e. such materials have better hygienic 

properties. Formation of complex microfibrillar fibers and 

threads by processing melts of polymer mixtures allows you to 

regulate their consumer characteristics both due to the 

properties inherent in nanofillers and due to their effect on the 

size of the filaments of the dispersed phase component in the 

matrix.  
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The dependence of the mechanical properties of complex 

yarns from polypropylene microfibrils on the content of 

nanoadditives and their chemical nature is given in Table 1.5, 

1.6 and Fig. 1.7. Microfibrillar yarns were obtained by 

extraction of the matrix polymer from monofilaments formed 

from PP/SPA mixtures filled with aluminum oxide 

nanoparticles [25], as well as bicomponent nanoadditives 

TiO2/SiO2  [47], Ag/ SiO2  and Ag/Al2O3  [87]. As can be seen 

from Table 1.5, the tensile strength, elastic modulus and 

elongation of complex yarns from the initial mixture are close 

to similar values for textile polypropylene yarns formed using 

traditional technology. The introduction of aluminum oxide 

nanoparticles into their structure leads to an increase in 

mechanical properties, the degree of increase of which, as for 

composite monofilaments, is determined by the content of the 

nanoadditive and correlates with the dimensional 

characteristics of PP microfibrils.  
 

Тable 1.5 –  Effect of nanoscale alumina content on mechanical 

properties of complex threads  
 

Contetn 

of 
Al2O3, 

wt. % 

Strength, 

MPa 

Elastic 

modulus, 
GPa 

Elonga-

tion, 
% 

Maintaining 

strength, %  

in a knot 

 

in a loop 

0 260 3,50 12.3 63 68 

0.1 310 3,75 11.4 67 71 

0.5 335 4,08 11.2 72 75 

1.0 380 4,29 11.0 75 78 

3.0 360 4,15 10.3 70 73 
 
The minimum average diameter of microfibrils (2.2 μm) and 

their maximum proportion (94.9 wt. %) in the extrudate of the 
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mixture containing 1.0 wt. %  Al2O3  provided mono- and 

complex filaments with the highest strength and modulus of 

elasticity. In addition, microfibrillar filaments are characterized 

by improved elasticity, compared with textile polypropylene 

filaments, as evidenced by the values of strength retention in 

the loop and knot.  

 Table 1.6 presents the results of a study of the influence 

of the content of the mixed oxide  TiO2/SiO2  on the properties 

of complex fibers from nanofilled PP microfibrils [47]. The 

data in the table indicate that the nature of the dependence of 

the mechanical properties of microfibrillar fibers on the content 

of the nanofiller is similar to that described for fibers modified 

with alumina.  

Тable 1.6 –  Effect of  TiO2/SiO2  nanoparticles concentration 

on the properties of complex threads  
 

Content of 
TiO2/SiO2, 

wt. % 

Strength, 
MPa 

Initial 
modulus, 

GPa 

Elon-
gation, 

% 

Specific 
surface 

area, m2/g  

0 160 2,8 13,3 84 

0,5 190 3,5 11,8 135 

1,0 240 3,8 12,6 190 

3,0 220 3,4 11,7 210 
 
Increasing the concentration of mixed oxide NPs to 1.0 wt. % 

leads to an increase in strength and initial modulus by 1.5 and 

1.3 times, respectively, and its further increase is accompanied 

by some deterioration of the mechanical characteristics of the 

threads, which is associated with an increase in the diameters 

of microfibrils, as well as the number of films. The 

introduction of (0.5÷3.0) wt. % TiO2/SiO2  nanoparticles into 

the microfibril structure leads to an increase in their specific 
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surface area in the entire concentration range.    

  Bifunctional inorganic substances in the nanostructure – 

silver/silica and silver/alumina also contribute to improving the 

quality of microfibrillar filaments: their tensile strength  (P) 

and elastic modulus (E) increase (Fig. 1.7). At a concentration 

of nanofillers in the mixture of more than 1.5 wt. %, the growth 

rate slows down. The established dependence is natural and 

may be associated with the effect of filling with a high-

modulus nanodispersed additive, as well as with a change in 

the morphology of complex filaments [87]. 

         
                           а)                                                         б) 

Fig 1.7 – Effect of nanoadditive concentration on the strength (a) 

and modulus of elasticity (b) of microfibrillar PP threads: 1– Ag/SiO2; 2 – 
Ag/Al2O3 

 
The effect of modification with Ag/SiO2 additive is more 

pronounced compared to Ag/Al2O3  nanoparticles, which is due 

to their higher specific surface area. It is known that silicas 

provide a significant improvement in the mechanical properties 

of filled compositions. In this case, the reinforcing effect of 

silica NPs correlates with the value of its specific surface area: 
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the modulus increases when Ssa ≥ 50 m2/g, and the degree of 

reinforcement increases with the increase of this indicator [89].  

The possibility of improving the quality of complex 

yarns by simultaneously using two modifying additives of 

nanofiller and compatibilizer is shown in [68] on the example 

of complex yarns obtained by processing mixtures of 

PP/CPA/CNT and PP/CPA/CNT/compatibilizer. Ethylene 

copolymer with vinyl acetate or sodium oleate was used as a 

compatibilizer. Studies of the mechanical properties of yarns 

from PP microfibrils showed that adding 0.1 wt. % of carbon 

nanotubes to the mixture increases their strength and initial 

modulus (Table 1.7). From the electron micrographs shown in 

Fig. 1.8, it is clear that under the influence of the nanoadditive, 

the diameters of PP microfibrils decrease, and they acquire the 

correct cylindrical shape. The number of so-called “varicose” 

fibers, which are formed as a result of incomplete 

decomposition of liquid jets, also decreases. All this 

contributes to the improvement of the mechanical properties of 

the threads.    

Тable 1.7 – Effect of CNT and CNT/compatibilizer additives 

on the mechanical properties of complex threads 
 

Additive 

Tex 
Strength, 

MPa 

Initial 

modulus, 

GPa 

Elonga-

tion, 

 % name 
content, 

wt. % 

без добавок 4,2 170 2,8 13,3 

CNT 0,1 4,0 230 3,5 10,7 

CNT/ CEVA 0,1/3,0 3,3 255 3,8 13.6 

CTN/С18Н33О2Na 0,1/3,0 3,1 275 4,5 12,7 
 
The introduction of a compatibilizer into the nanofilled mixture 

contributes to further improvement of the mechanical 
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properties of the threads. At the same time, the modifying 

effect depends on the chemical nature of the compatibilizer. 

The binary additive CNT/sodium oleate is more effective than 

CNT/CEVA - the strength and initial modulus of the threads 

are higher by 12 and 25%, respectively. This is due to their 

different effects on the morphology of incompatible PP/SPA 

mixtures. In compositions with sodium oleate additives, PP 

microfibrils quantitatively predominate over other types of 

structures and have a smaller diameter, which is one of the 

reasons for the increase in the performance characteristics of 

complex threads.  
 
  

 
Fug. 1.7 – Electronic microphotographs of polypropylene 

microfibrils from PP/CPA/CNT blends with the following 

composition: 30/70/0 (a); 29.9/70/0.1 (b) 
 
.   The simultaneous use of a nanoadditive and a 

compatibilizer significantly improves the hygienic properties of 

modified microfibrillar threads - their hygroscopicity, 

determined by the value of equilibrium water absorption, 

increases by (15÷20) times [68]. This is due to changes in the 

             а)                      b) 

   б) 



 40 

pore structure and an increase in the specific surface area of 

microfibrils (Table 1.8). The values of the specific surface area 

(Ssa) of unmodified microfibrils, calculated from the drying 

thermograms of the water sorption-desorption process, exceed 

the Ssa of traditional polypropylene textile threads by several 

orders of magnitude. 
 

Тable 1.8 – Effect of CNT and CNT/compatibilizer additives 

on the specific surface area and porosity of PP microfibrils 

 

 
The introduction of CNT additives causes an increase in the 

specific surface area by 2.1 times (Table 1.8). For microfibers 

containing binary CNT/compatibilizer additives in their 

structure, there is a further increase in Ssa. At the same time, the 

volume of micro- and macropores increases, and ultrapores 

almost do not change. 

1.2.2.2. Nonwoven materials made of ultrafine nanofilled 

fibers.  Fibrous materials with filament diameters of micro- and 

nanoscale dimensions demonstrate unique chemical, physical 

and mechanical properties, they are characterized by a very 

high surface to volume ratio, which ensures their wide 

application as highly efficient sorbents, precision purification 

filters, membranes for separating liquid and gaseous media, 

Добавка Об’єм пор, м3/г·10-3 Питома 
повер-

хня, 

м2/г 
назва 

вміст, 

мас. 

% 

макро-

пори 

мікро-

пори 

ультрапори 

полі-

шар 

моно-

шар 

без добавок 1,4 1,04 0,42 0,58 84,0 

ВНТ 0,1 4,5 6,0 0.53 0.52 180,0 

ВНТ/СЕВА 0,1/3,0 3,9 7,3 0,43 0,49 190,0 

ВНТ/ол.Na 0,1/3,0 2,7 8,2 0,42 0,59 220,0 
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special and medical products, etc. A biodegradable fibrous 

material with individual filament diameters from 800 nm to     

9 μm was obtained by electroforming, which is characterized 

by ultra-high hydrophobicity and the ability to sorb oil and oil 

products (their sorption reaches more than 100 grams per 1 

gram of fiber) [78]. By the method of needle-free 

electrospinning from industrial polymers of polyvinyl alcohol, 

polyacrylonitrile (PAN) and mixtures of PAN with 

polyethylene oxide or polyethyleneimide, nanostructured 

membranes were obtained, which are one of the most 

promising materials for solving the global climate problem - 

reducing carbon dioxide emissions into the atmosphere by 

reducing its concentration in the production of energy 

enterprises and subsequent utilization [90]. The introduction of 

titanium dioxide nanoparticles into the structure of the 

filaments gives the membranes photocatalytic properties and 

expands the possibilities of their application for a wide range of 

environmental problems. By the method of extrusion from a 

mixture of PL/PVA of composition 40/60 wt. %, a 

biodegradable fibrous material for medical purposes from 

polylactide fibrils with sizes from 400 nm to 1 μm was 

obtained [91].  

     Microfiltration using polymeric fine-fiber materials is 

one of the simplest, most reliable and economically feasible 

methods of purifying drinking water, atmospheric air and 

technological gas and liquid media from mechanical 

contaminants of micron and submicron sizes, bacteria, 

microbes, etc. [92]. The main indicators characterizing the 

operational properties of filter materials (FM), namely the 



 42 

retention capacity (efficiency) and permeability (specific 

productivity) are determined by the size and shape of the 

elements from which they are made. The average pore diameter 

of the filter layers is the lower, the smaller the size of the 

structural elements, and their shape is the more uniform, the 

more geometrically uniform and correct the shape of the 

structures forming the filter layer. In nonwoven materials 

obtained by blowing or electroforming, the fibers have a 

uniform distribution in diameters, however, due to their chaotic 

(according to the law of chance) arrangement in the layer, there 

is a probability of the formation of a certain number of pores 

with diameters larger than the nominal.  

The structural element of nonwovens obtained by 

extraction of matrix polymer from composite films formed 

from melts of the original and nanofilled PP/CPA mixtures on 

a worm press through a flat-slot head of the “fishtail” type 

were practically continuous PP microfibrils with diameters 

from tenths of a fraction to several micrometers [57,59,60]. 

The advantage of FMs obtained by extraction of matrix 

polymer from composite films with microfibrillar morphology 

is an ordered homogeneous structure - microfibrils in the filter 

layer are oriented in the direction of extrusion and are located 

parallel to each other. To improve the performance of FM, the 

structure of the filter layer was modified by adding nanofillers 

to the mixture: pyrogenic silica (SiO2) and bifunctional 

substances based on it - silver/silica (Ag/SiO2) and titanium 

oxide/silica (TiO2/SiO2) [57]. The introduction of all additives 

contributed to an increase in the mass fraction of microfibrils 

(W) (Fig. 1.8) and a decrease in their average diameter (d)  

(Fig. 1.9).  
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Fig. 1.8.  The influence of the concentration and chemical nature of 

nanoadditives on the mass fraction of microfibrils in the extrudate:   
1 – Ag/SiO2; 2 – SiO2; 3 – TiO2/SiO2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9. Effect of concentration and chemical nature of 

nanoadditives on the average diameter of microfibrils: 1 – Ag/SiO2; 

2 – SiO2; 3 – TiO2/SiO2 
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 As can be seen from Fig. 1.8 and 1.9, the effect of 

nanoadditives on the morphology of the mixture depends on 

their chemical nature and concentration. Nanoparticles of the 

mixed oxide TiO2/SiO2 are more effective, compared to the 

original silica and silver/silica NPs: the diameters of the fibrils 

are the smallest, and their number in the extrudate is the 

largest, which is due to the high polarity of the oxide. The lack 

of interaction with the melt of non-polar polypropylene 

promotes the migration of NPs from the volume of the PP melt 

to the phase boundary of the components and localization in it. 

The preferential placement of nanoadditives in the transition 

layer most effectively reduces the value of the surface tension 

and contributes to the formation of a finer morphology [3,93].  

The curves of dependences W = f (C)  and  d = f (C) 

have an extreme character – at the additive content of 1.0 wt. % 

the average diameter of microfibrils is minimal, and their mass 

fraction reaches maximum values for all investigated additives. 

The decrease in the dimensional characteristics of microfibrils 

is due to the compatibilizing effect of nanofillers. With an 

increase in the concentration of NPs of all additives > 1.0 wt. 

%, the structure coarsens. This may be due to the saturation of 

the interfacial zone with the modifier. A similar effect of 

reducing the surface activity of natural clay upon reaching a 

certain concentration was also observed by the authors [94,95]. 

For the natural rubber (NR)/PP mixture, the dimensional 

characteristics of the NR particles in the PP matrix decreased 

linearly only at a clay content of up to 5.0 wt. % [94]. The 

introduction of organomodified montmorillonite into the 

PP/polystyrene mixture in an amount of (0.2÷2.0) wt. % 
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contributes to a decrease in the dimensional characteristics of 

the microstructure in the entire concentration range. The best 

result is achieved at a clay content of 0.5 wt. %: the diameter of 

microfibrils decreases by 1.6 times and the uniformity of their 

distribution increases by ~ 5 times [95].  

Analysis of the results of assessing the efficiency of 

atmospheric air filtration from mechanical particles with a size 

of (0.3÷1.0) μm by filter material from the initial and three-

component mixtures containing 1.0 wt. % of nanofiller shows 

that the introduction of nanoadditives into the structure of 

polypropylene microfibrils provides an increase in the 

precision and efficiency of FM (Table 1.9).  
 

Тable 1.9 – The influence of the chemical nature of 

nanoadditives on the efficiency of atmospheric air purification 

and the performance of filter materials 
 

Additive 

name 

Efficiency, % (by particle size, μm) Produc- 
tivity* 
dm3/m2∙ 
hour 

0,3 0,4 0,5 0,6 0,8 1,0 

without 

additives 
78,6 83,5 85,9 87,8 91,9 99,4 4050 

SiO2  99,8 100 100 100 100 100 10650 

Ag/SiO2 99,3 99,9 100 100 100 100 10840 

TiO2/SiO2 99,9 100 100 100 100 100 12230 

* at a pressure of 0.5 · 105 Pa  
 

           As can be seen from Table 1.9, the introduction of 

nanoadditives into the structure of the filter layer provides an 

increase in the retention capacity of PMs and their precision. 

At the same time, the values of the purification efficiency are 

indirectly correlated with the dimensional characteristics of the 

structural elements of the filter layer - the retention of particles 
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with a size of 0.3 microns with maximum efficiency (99.9%) is 

demonstrated by PMs with mixed oxide additives. All modified 

filter materials retain mechanical impurities with a size of 0.5 

microns and above with an efficiency of 100%, and from the 

original mixture only 85.9%. Such an improvement in one of 

the main indicators of filters is due, first of all, to an increase in 

the uniformity of the structure of the filter layer due to a 

decrease in the average diameter of microfibrils by almost 2 

times and improvement of their shape. When cleaning media 

from mechanical impurities with a size of ≤ 1.0 μm through 

fibrous filter materials, in addition to the so-called “sieve” 

effect, a number of physicochemical processes play a 

significant role, namely: the contact effect, adsorption, 

Brownian diffusion [92]. Due to this, FM can retain particles 

with diameters 5 times smaller than the pore size. The decisive 

importance of the adsorption process is evidenced by a sharp 

increase in the specific surface area to 84 m2/g for the original 

and to (190÷352) m2/g for nanofilled PP microfibrils, 

compared to fibers formed using classical technology (Tables 

1.6, 1.10, 1.11). 

Тable 1.10 – The influence of the chemical nature of 

nanoadditives on the specific surface area and hygroscopicity 

of polypropylene microfibrils 
 

Additive name Specific surface area, m2/g Hygroscopicity, % 

without additives 84 0,17 

SiO2 244 0,35 

Ag/SiO2 230 0,31 

TiO2/SiO2 190 0,48 
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Тable 1.11 – Effect of silica concentration on the specific 

surface area of PP microfibrils 
 

Silica content, wt. % Specific surface 

area, m2/g 
Growth rate 

0 84 0 

0,5 197 2,3 

1,0 244 2,9 

3,0 307 3,7 

5,0 352 4,2 
 

The permeability of filters is determined by the pressure 

drop on both sides of the filter partition and the resistance of 

the material to the medium being cleaned. Studies of the 

performance of FM on distilled water showed its increase for 

samples in the structure of which there are nanoparticles of the 

original and modified silicas (Table 1.9). This is an unexpected 

result, since an increase in the precision and efficiency of 

filters of any class is usually accompanied by a decrease in 

their permeability. The increase in performance is obviously 

due to a decrease in the hydraulic resistance of the filter layer 

due to the better hydrophilicity of nanofilled PP microfibrils 

(Table 1.10). An additional factor that ensures the maximum 

performance of FM modified with a mixed oxide is the ability 

of materials with additives of TiO2 nanoparticles to self-clean. 

 An effective method of regulating the structure and 

operational properties of filter materials, which allows to 

significantly expand the spectrum and areas of their 

application, is the use of the 3D molding method (FDM 

process) to obtain composite films with microfibrillar 

morphology [64,65]. Studies performed using a PP/CPA 

mixture have shown that when composite multilayer films are 
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formed by FDM from strands with microfibrillar morphology, 

they retain the structure laid down during extrusion. Nonwoven 

filter material from such films can consist of several layers, in 

each of which polypropylene microfibrils are oriented in one 

direction and are located parallel to each other, and the layers 

are perpendicular to each other (Fig. 1.10). This provides the 

FM with increased mechanical performance and a uniform 

ordered morphology. 
 

  

            а)                                                                          b) 

Fig. 1.10 – Electronic microphotographs of the filter material:          
a) surface layer, b) cross section 

 
  In [64], it was shown that the filtration efficiency and 

precision of FM were increased by reducing the diameters of 

microfibrils in the strands, which was achieved by changing the 

size of the cells of the filtration meshes and the pressure before 

the die during processing on a single-screw extruder. The 

possibility of regulating the dimensional characteristics of PP 

microfibrils in the filter layer by changing the type of 

equipment for compounding the ingredients of the mixture 

(single-screw or twin-screw extruders) was also established 
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[65]. The introduction of zirconium dioxide (ZrO2) 

nanoparticles into the system is an additional factor that 

provides regulation of the microfibrillar structure of composite 

films and filter materials based on them in the direction of 

reducing the diameters of microfibrils and narrowing their 

distribution. Thus, if the components are mixed on a twin-

screw extruder and 2.5 wt. % of ZrO2 nanoparticles are added 

to the mixture, the thinnest microfibrils are formed (the average 

diameter is 640 nm) with a narrow distribution in transverse 

dimensions. The results of evaluating the efficiency of 

atmospheric air purification from mechanical impurities with a 

size of (0.3÷1.0) microns show that it depends on the diameters 

of microfibrils and the number of layers (Table 1.12).  

Тable 1.12 – Efficiency of atmospheric air purification from 

mechanical impurities 
 

Composition of 

the mixture for 

obtaining FM 

Num-

ber of 
lay-

ers 

Filtration efficiency, % (by particle size, μm) 

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 

PP/CPA 

2 

4 
6 

83,8 

95,2 

96,2 

88,4 

97,2 

97,5 

90,1 

97,2 

97,9 

93,3 

99,1 

99,7 

99,4 

99,8 

100 

96,6 

99,8 

100 

99,7 

99,9 

100 

99,9 

100 

100 

PP/CPA / ZrO2 2 94,1 97,3 98,9 99,9 100 100 100 100 

PP/CPA * 1 78,6 83,5 85,9 87,8 89,3 91,9 97,4 99,4 

* FM from film obtained by extrusion method 
 

The retention capacity of filters naturally increases with an 

increase in the number of layers, which is the result of an 

increase in the uniformity of the pore morphology of the 

material. The reduction of microfibril diameters to nanosizes in 

the filter layer obtained from the PP/CPA/ZrO2 composition 
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leads to a further improvement of one of the main 

characteristics of the PM - a two-layer filter provides the 

efficiency of gas medium purification at the level of materials 

without filler, which consist of 4-6 layers.  

Conclusion 

Today, nanofilled fibrous synthetic materials are 

industrially developed and widely used to provide products 

made from them with the desired consumer effects. The 

presence of substances in the nanoscale in the structure of 

fibers and threads helps to improve their mechanical 

properties, and in polymer mixtures enhances the self-

reinforcing effect of products made from them. 

     In industry, nanofilled polymeric fibrous materials are 

successfully used to manufacture new types of filters capable 

of self-cleaning and preventing pollution. On their basis, a 

new generation of effective sorbents is created for cleaning 

technological environments, including the medical industry. 

In terms of their performance, they exceed ion-exchange 

resins, while being 5 times cheaper than them. Such 

nanocomposites absorb a wide range of metal ions from 

water, destroy organic compounds, concentrate and separate 

radionuclides. 

Polymer modification with nanoadditives also allows 

solving environmental and social problems. Composites for 

water purification and new environmentally friendly adsorbents 

for environmental restoration have been created on the basis of 

biopolymers. The development and implementation of modern 

"green" technologies allows recycling and using secondary 

polymer resources. 
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Today, despite the large number of existing varieties of 

polymer composites, the trend towards their further 

improvement and the creation of new modern fibrous 

nanofilled materials is constantly growing. Analysis of the data 

presented in section 1 on the influence of nanofillers on the 

performance characteristics of fibrous materials shows that one 

of the determining factors is the content of modifying additives 

in the structure of materials. In the technology of 

multicomponent systems, the main criterion for testing 

theoretical hypotheses remains the results of experiments, 

which are laborious and long-term. 

           Based on this, an important task is to maximally reduce 

the transition time from laboratory experiments to industrial 

samples. An effective means of increasing the efficiency of 

scientific research is the creation of software for mathematical 

modeling of experiments, processing their results, and 

optimizing the composition of multicomponent mixture 

systems in order to obtain modern fibrous materials with 

improved properties.  
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 CHAPTER 2.  SOFTWARE FOR MATHEMATICAL 

EXPERIMENTAL PLANNING AND OPTIMIZATION 

OF THE COMPOSITION OF MULTICOMPONENT 

SYSTEMS  

 In chemical technology, most of the studied objects 

belong to the class of complex systems, which are 

characterized by a large number of interconnected parameters. 

The task of studying such systems is to establish the 

dependence between the input parameters - factors and output 

parameters - indicators of the quality of the system's 

functioning, as well as to determine the levels of factors that 

optimize its output parameters. Today, there are two 

approaches to solving the problems of identification and 

optimization of complex systems: deterministic and stochastic 

[96]. In the first method, before solving extreme problems, a 

comprehensive study of the mechanisms of the phenomenon is 

carried out, on the basis of which the system is given by a 

clearly deterministic model (usually in the form of a system of 

differential equations). In this case, the developed 

mathematical apparatus of modern control theory can be used 

to solve the optimization problem. However, such systems, due 

to the complexity of a comprehensive study of the mechanism 

of the phenomenon, are not amenable to a complete 

mathematical description in a reasonable time, which limits the 

application of the deterministic approach. In the absence of 

complete knowledge of the mechanism of phenomena, 

identification and optimization problems, i.e., finding optimal 

conditions for the course of processes or optimal selection of 

the composition of multicomponent systems, are solved using 

experimental and statistical methods.  
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 In the case of experimental and statistical studies of the 

object, the relationship between the input and output 

parameters of the system is usually described by a polynomial. 

To estimate the coefficients of the polynomial that 

approximates the real dependence (response function ψ), it is 

necessary to have statistical data that characterize the state of 

the system during operation. This information can be obtained 

by passive or active experiment (setting up experiments at 

certain points Xu = (х1u, х2u, ...,  хku)  (u = 1,2,...N) of the 

permissible region of the space of controlled input parameters. 

Provided that the influence of uncontrolled input parameters is 

insignificant compared to controlled ones, the system under 

study can be described by the following model:  

                                    ξ (y) = φ (X) + έ                                (2.1) 

 Today, in experimental and statistical research, the 

method of mathematical planning of an experiment is widely 

used, the essence of which is to select the number of 

experiments and the conditions for their conduct, necessary and 

sufficient to solve a given problem with the required accuracy, 

methods for mathematical processing of their results and 

decision-making. In experimental planning, the experiment 

itself is considered as an object of research and optimization, in 

which optimal control of the experiment is carried out. 

Depending on the information about the system under study, 

the research strategy changes in the direction of its 

optimization for each specific stage. Experimental planning is a 

powerful tool in conducting research and optimizing complex 

systems, which allows you to significantly reduce the number 

of experiments, and, thus, material costs and terms of 
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conducting experiments, makes it possible to obtain 

mathematical models and quantitative assessments of the 

influence of various factors on the processes under study. The 

use of experimental planning methods, in comparison with 

traditional methods, allows you to increase the efficiency of 

scientific research by up to 10 times. A mathematical model is 

a system of mathematical relationships - formulas, functions, 

equations that describe the object under study. Analytical 

recording of the property–composition dependence has a 

number of advantages over geometric methods of spatial 

representation of complex surfaces for multicomponent 

systems, namely: determination of property indicators directly 

by calculation, its versatility, the possibility of application in 

many fields of research (chemistry and chemical technology, 

metallurgy, the building materials industry, medicine, biology, 

agriculture, etc.). In addition, the problem is formalized, and 

the obtained dependences can be calculated using software. 

2.1. Basic concepts of the mathematical design of 

experiments method 

2.1.1. Factors, optimization parameters and models. 

During experiments, they usually deal with objects of research, 

which can be: technological processes, various compositions, 

products, etc. For them, input parameters are distinguished - 

controlled factors  х1, х2, ...,  хp, corresponding to the effects 

on the system, and output (quantitative characteristics of the 

research goal) - optimization parameters (criteria) у1, у2, ...,  уl. 

In this case, the model of the research object can be represented 

as a cybernetic system with k+n+l  inputs and m outputs    

(Fig. 2.1) [96].                  
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 Each of the output parameters depends on the state of 

the controlled part of the inputs, which is determined by the    

k-dimensional vector X = (х1, х2, ...,  хk); the controlled 

uncontrolled part of the inputs, which is described by the        

n-dimensional vector Z = (z1, z2 ...zn); the uncontrolled part, 

which is determined by the l-dimensional vector                       

E = (e1, e2... el), and the outputs, i.e. the numerical 

characteristics of the research objectives, are the optimization 

parameters (criteria) у1, у2, ...,  уl; y = F (X,Z,E). During the 

experiments, each factor can take one of several values, called 

levels. A fixed set of factor levels determines one of the 

possible states of the cybernetic system. At the same time, this 

set represents the conditions for conducting one of the possible 

experiments. Each fixed set of factor levels corresponds to a 

certain point in a multidimensional space, called the factor 

space. Experiments cannot be implemented at all points of the 

factor space, but only at those that belong to the admissible 

region of the factor space G (Fig. 2.2).  

The system reacts differently to different sets of factor 

levels. At the same time, there is a certain relationship between 

the factor levels and the reaction (response) of the system. The 

function , which connects the optimization parameter with the 

factors, is called the response function, and the geometric 

           Fig. 2.1 – Model of the research object 

Object of 

research 
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image corresponding to the response is the response surface 

(Fig. 2.3).  
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 The form of the dependencies j  for the system under 

study is unknown in advance, therefore it is necessary to obtain 

approximate equalities based on experimental data: 

                           ),...,,(ˆ  ˆ
21 kjj xxxy  ,  lj ...  

            The experiment must be conducted in such a way that, 

provided that the minimum number of experiments is 

performed, varying the values of the independent variables 

according to specially formulated rules, a mathematical model 

of the system can be constructed and the optimal values of its 

properties can be found. 

The selection of factors, optimization parameters and 

models takes place taking into account the purpose of the study 

and the existing conditions for conducting the experiment. 

Factors are variables that acquire a certain value at some point 

in time. They determine both the object itself and its state. 

There are quantitative and qualitative factors. Quantitative 

factors are variables that can be evaluated quantitatively, 

namely: measured, weighed, etc.; qualitative factors do not 

have a numerical assessment, but for them it is possible to 

construct a conditional scale that carries out coding, establishes 

a correspondence between the levels of the qualitative factor 

and the numbers of the natural series. Factors can also be 

controlled and uncontrolled. Controlled are such input 

variables, the values of which in the experiment are known at 

each point in time. Thus, when studying a technological 

process, all variables that determine the state of the process and 

the values of which can be estimated using appropriate 

measuring instruments are controlled. Controlled variables, in 
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turn, can be divided into controlled and uncontrolled. 

Controlled factors are those whose values can be purposefully 

varied during the experiment. Factors for which such a change 

is impossible are called uncontrolled. These are input variables 

whose values cannot be estimated during the experiment, or 

those that have an impact on the results of the experiment, or 

even factors about the existence of which the experimenter has 

no information.   

        The characteristic of the goal of an experiment or 

research, given quantitatively, is called an optimization 

parameter (optimization criterion, objective function). 

Optimization parameters can be economic (profit, cost, 

profitability, experiment costs, etc.), technical and economic 

(productivity, stability, reliability, efficiency, etc.), technical 

and technological (product yield, physical, mechanical, 

physicochemical, medical and biological characteristics).  

       A number of requirements are put forward for the 

optimization parameter: effectiveness in terms of achieving the 

goal (i.e., the optimization parameter should evaluate the 

functioning of the system as a whole, and not its individual 

subsystems); universality (the ability to comprehensively 

characterize the object of study); quantitative expression in a 

single number; the presence of a physical essence; simplicity 

and accessibility of calculation. The number of values that an 

optimization parameter can take is called its definition domain; 

they can be continuous and discrete, limited and unlimited. The 

researcher must be able to determine the optimization 

parameter for any possible combination of selected levels of 

factors.   



 59 

       For planning experiments, models in the form of 

algebraic polynomials have found the greatest application. To 

choose a specific model, it is necessary to formulate certain 

requirements. These include adequacy (the ability of the model 

to predict the results of the experiment in a certain area with 

the required accuracy); meaningfulness (the model must well 

explain already known facts, identify new ones and predict the 

further behavior of the system); simplicity (the simpler the 

model, the better it is, other things being equal). 

     Depending on the problem statement, different models 

can be chosen. Explicit functional dependencies of the form are 

often used: 

               ),,...,,,...,( 2121  mpxxxfy  ,           (2.2)    

       where: f  – some function called the regression function; 

pxxx ,..., 21 – independent variables (factors);  m ,..., 21  

– dependence parameters;  – random component. The latter is 

introduced into the model when the data show noticeable 

variability of a random nature. It is very often assumed that  

enters model (2.2) additively, then it takes the form:                                 

          ),...,,,...,( 2121 mpxxxfy         (2.3) 

Relations (2.2), (2.3) are called regression models. 

 For independent factors pxxx ,..., 21 , the researcher 

chooses certain values, and experimentally obtains the 

corresponding values y . Then (2.3) passes into a system of 

relations from which the parameters 
m ,..., 21

 are 

determined. Due to the presence of a random component, the  
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m ,..., 21
 parameters can only be estimated (and not precisely 

determined). In this case, estimates mbbb ,..., 21  of the 

corresponding parameters are obtained, and instead of model 

(2.3) in reality, an approximation ŷ to it is operated: 

                              ),...,,,...,(ˆ
2121 mp bbbxxxfy  . 

If the function f  is a polynomial, then  mbbb ,..., 21  are called 

regression coefficients, and the function takes the form: 

                         ...ˆ
,

0  
ji

jiij

i

ii xxbxbby            (2.4) 

2.2. Mathematical planning of an experiment  

 Solving problems using mathematical methods is 

carried out by formulating the problem, choosing a research 

method, a mathematical model and analyzing the result 

obtained. The mathematical formulation of the problem is 

presented in the form of numbers, geometric shapes, functions, 

systems of equations, etc. 

 The main stages of mathematical planning are as 

follows: setting the problem, defining the object and purpose of 

the research, studying objects, etc.; choosing the type of 

mathematical model (often several models are built and the 

best one is chosen); describing the transformation of input 

signals into output characteristics of the object (for example, 

using algebraic dependencies); studying the quality of the 

developed models [96]. 

 After selecting the type of model, i.e. the type of 

dependence of y on x and writing the corresponding equation, 

in the area of the factor space allocated for research, an 
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experiment is planned. Then, experiments are carried out to 

estimate the numerical values of the constants (coefficients) of 

this equation. Since the polynomial (2.4) has Сd
k+d  coefficients 

that need to be determined, the experiment plan                  
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must contain at least Сl
k+d   different experimental points Xu = 

(х1u, х2u, ...,  хku), u = 1,2,...N.                   

 2.2.1. Determination of regression coefficients by the 

least squares method. According to the results of the 

experiment on the object of study, a mathematical model of a 

certain form is obtained. In particular, it can be a regression 

model with a regression function in the form of a polynomial 

of the appropriate degree - the so-called polynomial regression 

model. The quality of the regression model's approximation to 

the real object depends not only on the experimental data, but 

also on the method of processing the results used to build the 

model. For this purpose, the least squares method (LSM) is 

often chosen. In this case, it is assumed that n experiments are 

performed, in each of which the vector of independent factors  

x =  (x1,…xp) is given certain values. As a result, some values 

of the dependent variable y are obtained. Provided that            

xi = (xi
1,…, xi

p) is a set of values of the dependent variables that 

were given to them in the i-th experiment, then yi are the 

corresponding values of the dependent variable (i = 1,2,…, n). 

To estimate the parameter vector  = (1,…, m), we choose 
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such a vector b = (b1,…, bm) for which the sum S()  (2.5) takes 

on a minimum value by   Rm:  

                           









n

i

ixf
i

yS
1

2
);()(                     (2.5) 

where: Rm – m-dimensional Euclidean space. 

 If the regression function f  is differentiable with respect 

to the parameters (1,…,m), then the necessary condition for 

the minimum of  S() is that the equalities  

                               mj
S

j

,...,2,1,0
)(









.                       (2.6) 

System (2.6) consists of equations, the number of which is 

equal to the number of unknowns of the system – coefficients 

mbbb ,...,, 21 , and is called a system of normal equations or a 

normal system.  

The solution to the problem of minimizing the function 

S()is given below for a special case of model (2.6) provided 

that p = 1, the vector of independent variables x is a scalar 

variable, and m = 2. In this case, instead of the notations 1, 2, 

the more common 0, 1 will be used for the dependence 

parameters. It is also assumed that the function f is linear in the 

parameters 0, 1, i.e. in the expression of the function f, the 

variable x is present only in power 1. Then the regression 

function  f  takes the form:  

                           f(x) = 0 + 1 x,                              (2.7) 

and, thus, the following partial case of model (2.6) will be 

investigated: 

                                     y = 0 + 1 x + ,                              (2.8) 
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where: x and y – respectively, independent and dependent 

variables, 0, 1 – model parameters,  – random component of 

the model 

Equation (2.8) is called simple linear regression. 

To estimate the parameters 0, 1 from experimental 

data, it is assumed that the independent variable x in the 

experiments takes the values x1,…, xn, and the dependent 

variable  y – respectively, y1,…, yn. In this case, the problem of 

minimizing the function S()  takes the form: 

               S ()= S(0, 1) =  



n

i
ixiy

1

2
)( 10   min,    (2.9) 

where the minimum is taken for all values of  0, 1  for fixed 

x1,…, xn  and  y1,…, yn. If the solution to problem (2.9) is 

denoted by (b0, b1), and the corresponding estimate of the 

regression function (2.7) is ŷ, then 

                                ŷ = ŷ(x) = b0 + b1 x                             (2.10). 

Fig. 2.4 schematically depicts the regression line (2.10) and a 

set of experimental points (xi, yi), as well as vertical segments 

(deviations) connecting the indicated points and the line. These 

deviations are measured by the differences of the ordinates 

corresponding to the experimental points and the points of the 

approximating line for the values x = x1 ,…, xn, that is, by the 

algebraic values of the vertical segments shown in Fig. 2.4. In 

this case, the sum of the squares of the lengths of such 

segments will be the smallest possible. The value 1 is the 

slope, and  0  is the free member of the line (the segment on 

the ordinate axis at x = 0), and  b1,  b0  are their estimates from 
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the experimental data. They are, respectively, the slope and the 

free member of the equation of the line (2.10). 

           
       Fig. 2.4. Regression line with vertical deviations 

 

To solve problem (2.9), calculate the partial derivatives 

with respect to 0, 1  of the function  S = S(0, 1),  which 

have the following form: 

                                S / 0 = - 2 


n

i 1
(  yi – 0 – 1 xi),  

                              S / 1 = - 2 


n

i
ix

1
(yi – 0 – 1 xi). 

By equating the found derivatives to zero and performing 

appropriate simplifications, we obtain a system of two 

equations with unknown parameters  0, 1: 

                                    0 n + 1  xi =  yi, 

                               0 xi + 1  xi
2 =  xi yi,                      (2.11) 

In equations (2.11), to simplify the notation, the summation 

indices are omitted (here and in similar situations, the sign  

means summation over all possible values of the index, in this 

case from 1 to n). This system is a partial case of the normal 

equations (2.6). The solution of the normal system (2.11) is the 

     Line 
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solution to the minimization problem (2.9). The system of 

equations (2.11) is always consistent, regardless of whether its 

determinant is zero or not. The equality of zero of the specified 

determinant can occur only in the case when all observations 

are made at only one value of x. In this case, the specified 

system has many solutions, each of which can be found from 

the equation:  

                     0 n + 1n x =  yi,                             (2.12) 

Provided that the main determinant of the system of 

equations (2.11) is not equal to zero, the system has a unique 

solution, for which the following notation is introduced:  

Sx y = (xi – x )( yi – y ), Sx x = (xi – x )2, Sy y = ( yi – y )2, 

where summation indices are omitted.  

 In the case where y = (y1+…+ yn)/n), та                    

x = (x1+…+ xn)/n  are the arithmetic mean values of the 

independent and dependent variables, the solution of system 

(2.11) takes the form: 

                                      b1 = Sx y / Sx x ,                                (2.13) 

                                      b0 = xby 1 .                                (2.14) 

Thus, in the case of simple linear regression, the 

relationship model between the objective function y and the 

independent variable x is given by equality (2.10), in which the 

coefficients b0, b1 are determined by equations (2.13), (2.14). 

 Provided that certain probability assumptions about the 

nature of the sample data  x1,…, xn  and   y1,…, yn  are met, 

then the model (2.10) also has the corresponding properties of 

a probabilistic nature. This makes it possible to assess the 

quality of the constructed model, find confidence intervals for 
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its values, and perform forecasting using regression analysis 

and planning of experiments. 

 2.2.2. Model adequacy checking. After determining the 

coefficients of the developed mathematical model (2.10), the 

hypothesis of the adequacy of the regression equation is tested, 

i.e., the possibility of using the obtained equation for further 

research is determined, or the need to build another model is 

determined. The procedures for this test are conventionally 

divided into analytical and graphical methods. For analytical 

testing of the adequacy of the model, the difference between 

the experimental value and the response value predicted by the 

regression equation at some points of the factor space, which 

can be selected from the points of the plan (for unsaturated 

plans), or from additional control points, is studied. Control 

points are usually chosen either in the area of greatest interest, 

or placed in such a way that observations in them can be used 

to construct a polynomial of higher degree.   

The implementation of the analytical method involves 

making more than one observation at least at one of the points 

{xj}. Provided that x1, x2,…, xn are observation points, and n > 

1, they are all considered different.  

The dependent variable y, up to the random additive 

error , can be represented as a linear combination of factor 

variables (independent variables, regressors)  x0, x1,…, xp  1: 

              y = 0 x0 + … +  p  1 xp  1 + ,               (2.15) 

 where:  0,…, p1 – coefficients of the mathematical 

model 

 As a result, a sample of size  n  was made, which is a 

set of experimentally obtained n sets of numbers of the form:  
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(x і0,…,x і, p  1, yі), і = 1,2,…,n, where: xij   is the value of the jth 

regressor (j-th independent variable) at the i-th observation,     

yі - is the corresponding value of the dependent variable y. The 

error value   at the i-th observation is denoted by  і.    

 To check the adequacy of a linear model, a fairly 

common method is to compare estimates of error variances 

obtained, on the one hand, using this model, and on the other 

hand, independently. This is equivalent to testing some linear 

hypothesis by calculating and analyzing the corresponding 

Fisher's F-ratio.  

 At the first stage, the experimental data were marked 

with the letter xi for the i-th observation point (row vector) of 

the independent variable, i.e. xі = (xі0, …, xі,p1), і = 1, 2,…, n. 

Since this method requires the presence of several observations 

for y at least at one of the points xі, it is assumed that this 

requirement is met, i.e. among the points xi there are some that 

are repeated. In this case, x1, x1,…, xm – are different 

observation points, and at least in one of them the number of 

observations is greater than 1. The specified F-statistic has the 

following form:  

                                   
2

2

2

1

S

S
F                                                (2.16) 
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       1iy , …. 

iniy , і = 1,…., m – the values of the 

output variable observed at the point  x = xi; 

 
in  - number of 

experiments at the i-th point 

 Provided that m > p, the relation of the form 
2

2

2

1

S

S           

(a variant from the set of F-relations) has a Fisher distribution 

),( mnpmF   [33,97]. According to the general provisions, 

the hypothesis of the adequacy of the model is not accepted at 

the significance level  if the specified relation exceeds the 

quantile of the level (1-) of the Fisher distribution. Otherwise, 

the hypothesis is accepted. To check the adequacy of the model 

by the described method, the software developed by us can be 

used [33]. 

2.2.3. Full and fractional factor experiments. In 

experimental studies, each of the different values that a 

variable 
iX  takes is called a level of that variable. The number 

of different levels of a factor 
iX  is denoted by 

iS . An 

experiment in which the levels of each factor are combined 

with all levels of the other factors is called a full factor 

experiment (FFE). A full factor experiment is written as: 

kSSS  ...21
, since the number of different points or 

different experiments is 
kSSSN  ...211
. An experimental 

plan is called an incomplete or fractional factor plan if the 

number of different points is 
kSSSN  ...211
. Provided that 

in the response function  
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                                    kXXXf ,...,, 21                          (2.17)  

the number of different values that a variable 
iX   ),...,2,1( ki   

can take in all experiments is two, i.e. 
iS =2. In other words, the 

variable 
iX  in each experiment takes one of two possible values 

(
1iX   and 

2iX ), or varies at two levels. If 
1iX      

2iX , then 
2iX  is 

called the upper level of the factor 
iX , and 

1iX  is called the 

lower level. To simplify the equations, coded variables are 

introduced: 
i

ii
i

S

XX
x

0
 ,   ki ,...,2,1 ,                          

 where:  
2

210 ii
i

XX
X


    ki ,...,2,1 ; 

                              
2

12 ii
i

XX
S


   ki ,...,2,1 . 

The coded variable ix ( ki ,...,2,1 ) in each experiment can 

take the values 1 or -1, which are its upper and lower levels. 

Without loss of generality, we can assume that expression 

(2.17) with variables 
kXXX ,...,, 21
 presented in coded variables 

form has the following form: 

                                   kxxxf ,...,, 21                            (2.18) 

In the case when in expression (2.17) the number of 

independent variables 2k , then  21, xxf . All possible 

combinations of levels of variable 1x  і 2x  in a full factor 

experiment 22 are presented in Table 2.1  
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Тable 2.1  – Matrix of plan FFE 22  
 

Experim

ent 

number 

Matrix of independent 

variables Research 
option 

Observation 

х0 х1 х2 х1 х2 

1 1 -1 -1 1 (1) Y1 

2 1 1 -1 -1 а Y2 

3 1 -1 1 -1 b Y3 

4 1 1 1 1 аb Y4 
 
In the table, the symbol (1) means that both factors are in the 

lower level; a – х1 in the upper level; b – х21 in the upper level; 

ab – both in the upper level. This is a full factor experiment 22. 

Often the response function has the form: 

                            211222110 xxxx               (2.19) 

A schematic representation of the FFE 22 is shown in Fig. 2.5. 

                                 
Fig. 2.5 – A schematic representation of the FFE 22 

  
 From Fig. 2.5 it is seen that the observations  y1, y2, y3, 

y4  are made at the vertices of the square. The coefficients of 

equation (2.19) can be calculated by the method of least 

squares.  
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     The response function of FFE 23 has the form: 

 321 ,, xxxf . All different combinations of variable levels 

are presented in Table 2.2.  

Таble 2.2 – Matrix of plan FFЕ 23  
 

       Matrix of independent variables 

Research 

option 
Observation 

х0 х1 х2 х3 
х1 
х2 

х1 
х3 

х2 
х3 

х1 

х2 

х3 

 1 -1 -1 -1  1  1  1 -1 (1) y1 

 1  1 -1 -1 -1 -1  1  1 A y2 

 1 -1  1 -1 -1  1 -1  1 B y3 

 1  1  1 -1  1 -1 -1 -1 ab y4 

 1 -1 -1  1  1 -1 -1  1 C y5 

 1  1 -1  1 -1  1 -1 -1 ac y6 

 1 -1  1  1 -1 -1  1 -1 bc y7 

 1  1  1  1  1  1  1  1 abc y8 
  
The response function is calculated from the equation: 

              
321123

3131

0 xxxxxx ji

ji

ij

i

ii   


   (2.20) 

The coefficients (2.20) are determined by the least squares 

method. 

 In a full factor experiment k2  the number of 

experiments is kN 2 . As the number of variables k  

increases, the number of experiments N  increases rapidly, so 

for large values of k , the implementation of FFE k2  becomes 

practically impossible. For FFE k2   experiments the response 

function has the following form: 

     
kkji

kji

ij

ki

ii xxxxxx ...... 21...12

11

0   


        (2.21) 
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With the growth of N  there is an increase in the number of 

interactions and their order in (2.21), but often in the specified 

equation the effects of high-order interactions can be neglected, 

or it is known a priori that some of them are absent. The 

number of experiments to find estimates of the unknown 

coefficients of such an equation can be significantly reduced. 

This is achieved by using fractional factor experiments. If in 

FFE k2  observations are carried out at all vertices of the    

k -dimensional hypercube, then when using fractional plans - 

only at some of them. 

Below is an example of constructing a fractional 

replica, in which the response function has the form: 

                                 



31

0

i

ii x                            (2.22) 

In this expression, the effects of pair and triple interactions are 

absent 0123231312   . 

 If  FFE  23 is used to estimate the unknown coefficients, 

then N =8. However, the number of experiments can be 

reduced, since in (2.22) there are no interaction effects. For this 

purpose, a plan is constructed, the matrix of which has the 

form: 
                                 

321 xxx    

                                    





























111

111

111

111

D
                                (2.23) 

                                       


 

                                              матриця ПФЕ 22  
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The matrix D is obtained from the matrix FFE 23 by deleting 

individual rows from it:  (1; -1; 1),   (-1; 1; 1),   (-1; -1; -1),    

(1; 1; -1). The constructed fractional factor experiment (FFE) 

design (2.23) is a half-replica of FFE 23. For its recording, the 

notation is used: 23-1, where 2 is the number of levels; 3 is the 

number of variables; N = 23-1 is the number of experiments. 

The code designation of the half-replica: с; а; в; авс. As can be 

seen from (2.23), the features of the design of the design are 

that the variable х3 at the points of the design satisfies the so-

called generating relation:: 

                                         213 xxx                                   (2.24) 

 Using this equation, it is easy to construct (2.23) – first the 

FFE 22, and then the column vector х3, which corresponds to 

(2.24). 

2.3. Planning an experiment on composition–

property diagrams 

2.3.1. Simplex grid plans. In chemical technology, in 

particular in the technology of polymer composite materials, 

most of the objects under study belong to the class of complex 

experimental design systems, which are mixtures of  q  

different components. The variables ix  ),...,2,1( qi   of 

such systems are the proportions (relative content) of the i-th 

components of the mixture and satisfy the following condition 

[96,113,114]: 

                             



qi

ix
1

1 , )0( ix                             (2.25) 

The locus of points satisfying condition (2.25) is a                 

(q-1)-dimensional regular simplex, which is a triangle for q=3, 
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a tetrahedron for q=4, etc. Each point of such a simplex 

corresponds to a mixture of a certain composition, and, 

conversely, any combination of the relative contents of q 

components corresponds to a specific point of the simplex. 

Since when planning experiments and constructing 

composition–property diagrams one has to operate with the 

factor space in the form of simplexes, it is advisable to switch 

from ordinary Cartesian coordinates to a special simplex 

system, in which the relative contents of each component are 

plotted along the corresponding faces of the simplex [96,98]. 

At the vertices of the simplex each ix = 1, and further - are 

determined by the lines (or surfaces) of the level parallel to the 

opposite side (or face) of the simplex. So, for example, for a 

three-component mixture, the simplex is an equilateral triangle 

х1, х2, х3  (Fig. 2.6).        

 

 

   

 

                

      

Рис. 2.6 – Симплексна система координат 

 
The value of the variable х1 at the vertex х1 is equal to one, and 

on the side х2х3 it is zero.  

 The problem of constructing a mathematical model of 

composition–property can be solved by writing the desired 

function as a polynomial of degree n in canonical form: 

х1 

х2 

х3 
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1

1
...ˆ                                                                                                                           

(2.26) 

       where:  nsss m  ...21 . 

Polynomials of this form (so-called reduced polynomials) are 

obtained from ordinary polynomials of the corresponding 

degree taking into account the relation (2.25) and contain 
n

nqC 1  coefficients. For example, a polynomial of the second 

degree, which in the general case is described by the equation: 
2

133

2

122

2

1113223311321123322110
ˆ xbxbxbxxbxxbxxbxbxbxbby 

 taking into account the ratio 1321  xxx  will take the 

form: 

                 
322331132112332211

ˆ xxxxxxxxxy   . 

             To estimate the coefficients of the reduced polynomial 

(2.26), plans were proposed that provide a uniform distribution 

of experimental points over a (q-1)-dimensional simplex. The 

points of such plans are the nodes of  {q, n}-simplex grids, in 

which (n+1) equally spaced levels in the interval from 0 to 1 






  1...,

,
2

,
1,0

nn
xi

 are used for each factor (component) and 

various combinations of them are taken. Thus, the number of 

such combinations 
n

nqC 1   is equal to the number of 

coefficients in the reduced polynomial (2.26). The set of points 

 
quuu xxx ,...,, 21 ,  n

nqCNu 1,...,2,1  , where 
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1...,
,

2
,

1,0
nn

xiu  ,  



qi

iux
1

1 forms a saturated 

simplex-grid {q, n}- plan. 

           Examples of {q, n}-grids are shown in Fig. 2.7.   

                

       

Fig. 2.7 – Types of {q, n}-grids 

 
Each grid corresponds to a plan matrix: 



















100

010

001

D  - for linear grid; 





























2/12/10

2/102/1

02/12/1

100

010

001

D
 - for quadratic grid; 

quadratic

ична 

cubic 

linear 

incomplete 

cubic 
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





























3/13/13/1

2/12/10

2/102/1

02/12/1

100

010

001

D
 - for incomplete cubic grid; 









































3/13/13/1

3/23/10

3/13/20

3/203/1

3/103/2

03/23/1

03/13/2

100

010

001

D

 - for cubic grid. 

 

       2.3.1.1. Planning with a preliminary transformation of the 

simplex sub-area.  When solving q-component mixed 

problems, it is often necessary to investigate only a                

(q-1)-dimensional simplex subdomain of the full                    

(q-1)-dimensional domain. The subdomain can be given by 

restrictions on the domain of change of all components, for 

example, 
ii qx   (i = 1, 2, …, q). In this case, direct 

application of the methods described above is impossible, since 

the condition is violated, therefore, a transformation of the 

subdomain is first performed by transition to a new coordinate 

system  qzzz ,...,, 21  (Fig. 2.8) [96,113,114]. 
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        Fig. 2.8 – Transformation of a simplex sub-area 

 
For the transformed sub-area, the equalities hold:  

      10  iz , i = 1, 2, …, q; 1... )()(

2

)(

1  u

q

uu zzz ,   (2.27) 

 where:  u – any point of the sub-area. 

          The transformation dependence between the coordinate 

systems  
qxxx ,...,, 21  and  qzzz ,...,, 21 , which corresponds to 

condition (2.27), is given by the following matrix equation      

X = AZ, in expanded form: 
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           (2.28)     

 

The elements of the matrix A are: – coordinates of the vertices 

of the simplex 
)(u

ix  and  
)(u

iz  – initial and new coordinates of 

the u-th transformed point. All plans that were used for the 

complete simplex can be constructed with respect to the new 

variables z, but the implementation of the experiment in such 

conditional plans is impossible. To conduct research, it is 

х3 

х2 

х1 

z1 

z2 

z3 

z3 

z2 

z1 
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necessary to represent the experimental compositions of the 

systems in x-coordinates, that is, to make a transition according 

to the conditions (2.28).  

2.3.2. Simplex-centroid plans. In simplex-lattice plans, 

experimental points are located mainly on the periphery of the 

simplex. As already noted, for a three-component composition, 

the simplex is an equilateral triangle, each vertex of which is an 

independent component of the mixture; the points contained on 

the edges of the triangle correspond to binary systems of pairs 

of ingredients, the points inside the simplex are the 

composition of the mixture from all three components. For a 

four-component system, the region of admissible variables has 

the form of a tetrahedron. Its faces correspond to simplices of 

ternary mixtures of three components, and the points inside are 

a mixture of four ingredients. In simplex-lattice plans, for 

constructing models of degree n, the experimental points are 

located in the simplex symmetrically, using for each 

component ),1( qixi    q+1 equidistant levels ranging from     

0 to 1:  0ix ; n/1 ; n/2 ;…; 1/ nn . All possible 

combinations of these levels are plans or simplex lattices. Such 

plans are considered fully saturated, i.e. the number of 

experiments in them is equal to the number of unknown 

coefficients of the corresponding model. In simplex-lattice 

plans, the experimental points are usually located on the 

periphery of the simplex. Some of these plans, for example, 

first- and second-order grids, do not contain any experimental 

points inside the studied region, i.e. those that correspond to 

the composition of all components. The polynomial used, 
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adequately describing the results of experiments on the faces of 

the simplex, can give significant deviations for the central 

regions that correspond to mixtures of all q components of the 

studied system. Based on this, another arrangement of 

experimental points was proposed - simplex-centroid 

experimental design [96]. In simplex-lattice plans, the 

experiments are implemented in  N = 2q – 1 experimental 

points, q of which are points containing one non-zero 

component;  С2
q - points containing two non-zero components 

(binary mixtures); С3
q – points containing three non-zero 

components (ternary mixtures), etc., and one point containing 

all the components of the mixture. The simplex-centroid plan 

contains points with coordinates  (1,0,...,0); (1/2,1/2,0...,0); ...; 

(1/q, 1/q... 1/q), as well as all points that can be obtained by 

permuting their coordinates. Thus, the experimental points are 

placed at the vertices of the simplex, the midpoints of the sides, 

the centers of faces of different dimensions, and one point is in 

the center of the simplex.  

Unlike simplex-grid plans, in which for a given q there 

is a set of  {q, n}-grids (n = 1,2,...), there is a unique simplex-

centroid plan for a fixed q. The approximating polynomial can 

be chosen as follows:  

 
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n
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qqkjiijk

qi
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qji

jiijii xxxxxxxxxy
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21...12

1 1

.......ˆ   

(2.29) 

It contains as many coefficients as there are points used in the 

simplex-centroid plan, i.e. these coefficients are uniquely 

determined by the responses at 2q -1 points of such a plan..  
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2.4. Optimization of the composition of 

multicomponent systems 

A significant number of experimental problems in 

chemistry and chemical technology are formulated as problems 

of determining the optimal process conditions, the optimal 

composition of the composition, etc. The research process is 

usually divided into separate stages. The information obtained 

after each stage determines the further strategy of the 

experiment. Thus, the possibility of optimal control of the 

experiment arises.  

At the first stage of solving the optimization problem, it 

is necessary to clearly formulate it, as well as to make 

transformations and simplifications in order to bring it to a 

form convenient for further solution. The optimization problem 

of processes characterized by several responses is usually 

reduced to a single-criterion optimization problem with 

constraints in the form of equality or inequality. Depending on 

the form of the response surface and the nature of the 

constraints, it is proposed to use uncertain Lagrange 

multipliers, linear and nonlinear programming, ridge analysis, 

etc. for optimization [99]. The disadvantages of these methods 

of solving the optimization problem include the complexity of 

the calculation. In particular, provided that the response surface 

is described by second-order polynomials, solving the problem 

for a conditional extremum using uncertain Lagrange 

multipliers leads to the need to solve a system of nonlinear 

equations.  

In the general case, the multi-criteria optimization 

problem is formulated as follows [100]: 
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         xfxfxf k
x


 ...,,,min 21 ,   Sx


          (2.30) 

where:  RRf n

i :  −  are  k (k2)  of target functions 

In this case, the target functions that are investigated for the 

maximum are transformed into functions that are investigated 

for the minimum:  

                   yy maxmin                          (2.31) 

The solution vector   Tnxxxx ...,,, 21


  belongs to the non-

empty domain of definition S. 

The solution of a multi-criteria optimization problem 

consists in finding a vector of variables that will satisfy the 

imposed constraints and optimize a vector function whose 

elements correspond to the objective functions. They are a 

mathematical description of the satisfaction criterion and, as a 

rule, can conflict with each other. Thus, the optimization 

problem is to find a solution at which the values of the 

objective functions would be acceptable for the formulation of 

the problem.. 

In the process of solving multi-criteria problems, a 

number of problems are solved [100]: 

- the problem of normalization - individual criteria, as a 

rule, have different scales and units of measurement, which 

makes it impossible to directly compare them; 

- the problem of taking into account the priority of 

criteria - they often have different significance, which is why it 

is necessary to find a mathematical definition of priority and 

the degree of its influence on solving the problem; 
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- the problem of determining the compromise region - 

arises when solving multi-dimensional nonlinear problems. 

All decision-making problems are complex and multi-

objective, since when choosing the best option, many different 

requirements must be taken into account, which may conflict 

with each other. Based on this, a multi-objective problem is 

often reduced to a single-objective problem, that is, one is 

formulated that includes one criterion, and one or more 

additional constraints are added to the original system of 

constraints.  

There is no universal method for solving multi-criteria 

mathematical programming problems. The choice and correct 

use of any of the known methods is left to the decision-maker. 

The most common heuristic method for solving a particular 

multi-criteria problem is to reduce it to the solution of some 

scalar (single-criteria) problem, the objective function of which 

is most often a certain combination of existing criteria 

mfff ...,,, 21
. This method is called scalarization of a multi-

criteria problem. Depending on the method of combining 

several existing criteria into a single scalar one, one or another 

type of scalarization is obtained, which is chosen based on the 

essence of the problem being solved and some additional 

information about the advantages.  

The simplest method of scalarization is based on the use 

of the so-called linear convolution of criteria: 

                     



m
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ii xfxF
1

min  
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In practice, the scalarization process begins with the selection 

of linear convolution coefficients, i.e. numbers mii ...,,1,  . 

These numbers are interpreted as “importance coefficients” of 

the corresponding criteria, the more important of which is 

assigned a larger coefficient in the linear convolution of 

criteria, and the less important one is assigned a lower one. 

This method is convenient to use; it allows you to preserve the 

linearity of the output functions, i.e. in the case when the initial 

criteria are linear, the final criterion will also be linear.  

Models describing a single-criteria problem are much 

simpler and can be solved by one of the known methods and 

used to optimize multicomponent systems. In order to 

determine the optimal composition of the mixture, it is 

necessary to solve the so-called conditional optimization 

problem, which is associated with optimization under variable 

constraints. These constraints reduce the size of the region in 

which the optimum is located. The optimization process 

becomes more complicated, since in the presence of constraints 

it is impossible to use the applied optimality conditions. In this 

case, even the basic conditions according to which the 

optimum should be achieved at a stationary point may be 

violated.  

To move from a conditional optimization problem with 

constraints to an unconstrained problem, there are a number of 

methods: the method of indefinite Lagrange multipliers, the 

method of penalty functions, the method of barrier functions, 

etc. If the method of penalty functions is used, it is necessary 
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that it “penalizes” the function Z for violating the constraints 

(i.e., increases its value). In this case, the minimum of the 

function Z will be inside the constraint region. There may be 

several penalty functions  xP  that satisfy this condition. The 

minimization problem consists in minimizing the function 

 xfZ   under the constraints   0xc j
, mj ...,,2,1 , then 

the function  xP  takes the form:  

                     
 




m

j j xc
rxP

1

1
,                      (2.33) 

where:  r – quite a small value 

By applying one of the above methods, we obtain an 

unconditional optimization problem, which is formulated as 

follows: find the minimum of the function f(x), where 
nRx  

in the absence of restrictions on  x, and  f(x) is a scalar 

objective function, continuously differentiable [100,101]. 

When solving these problems, the researcher must take 

into account the following factors: 

- the nature of the objective function of the problem 

being solved - single or multi-extreme; 

- the possibility of obtaining information about the 

derivatives of the objective function during the optimization 

process; 

- the presence of different approaches to organizing an 

iterative procedure for finding the optimum (methods based on 

the iterative movement of variables in a direction determined 

by one or another method). 
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Several methods can be used to perform unconditional 

optimization: direct search, first-order, second-order (Newton 

methods), random search, gradient, etc. In direct search 

methods for the minimum of the objective function (or zero-

order methods), information is used only about the value of the 

function. Many of them do not have sufficient theoretical 

justification and are built on the basis of heuristic 

considerations. Random search methods implement an iterative 

process of moving optimization variables in space using 

random directions. The advantage of these methods is a large 

range of possible directions of movement. The gradient method 

with step splitting is most often used, since it is quite simple 

and is characterized by good convergence. 

 Thus, to optimize the content of ingredients in a 

multicomponent mixture, it is necessary to conduct multi-

criteria optimization of the system taking into account several 

conflicting objective functions. To do this, the multi-criteria 

problem is reduced to a single-criteria problem, the conditional 

optimization problem is transformed into an unconditional 

optimization problem and it is solved by one of the specified 

methods. 

Today, one of the most widely used methods for solving 

the problem of optimizing processes with a large number of 

responses is the general optimization criterion proposed by 

Harrington - the so-called generalized desirability function      

D [99]. To find it, the found response values are converted into 

a dimensionless desirability scale d. The construction of a 

desirability scale, which establishes the relationship between 

the response value y and the corresponding value d (partial 
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desirability function), is fundamentally subjective, that is, one 

that reflects the researcher's attitude to individual responses. 

It is convenient to create a desirability scale using the 

method of quantitative assessments with an interval of 

desirability values from zero to one, but other options are also 

possible. The value d = 0 (or D = 0) corresponds to an 

absolutely unsuitable response value, and d = 1 (D = 1) is the 

best response value, and its further improvement is either 

impossible or of no interest. Intermediate desirability values 

and the numerical assessments corresponding to them are given 

in Table 2.3.  

Таble 2.3 – Base estimations of the desirability scale 

Quantitative assessment on a 

desirability scale 

Desirability of response 

values 

0,80 ÷ 1,00 very good 

0,63 ÷ 0,80 good 

0,37 ÷ 0,63 satisfactorily 

0,20 ÷ 0,37 bad 

0,00 ÷ 0,20 very bad 
 
This choice of numerical estimates is explained by the 

convenience of calculations, since d = 0.63 ≈ 1 – 1/e  and         

d = 0.37 ≈ 1/e. The d scale constructed in accordance with 

Table 2.3 is a dimensionless scale, with the help of which any 

response can be transformed in such a way that it is interpreted 

in terms of usefulness or desirability for any specific 

application.  

 The simplest type of transformation is one in which 

there is an upper and/or lower specification limit, and these 

limits are unique and do not allow changes in the quality 

criterion. Outside these limits, the value d = 0.0, and between 



 88 

them d = 1. The partial desirability function under a one-sided 

constraint has the following form: 

                         









min

min

,1

,0

yy

yy
d                           (2.34) 

Similarly, a partial desirability function is obtained if the 

specification imposes a constraint from above, and under a 

two-sided constraint, the desirability function takes the form:  
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 It is always desirable that the response value is not only 

between the specification limits, but also at a certain distance 

from them in order to prevent possible random fluctuations. In 

addition, it is sometimes difficult to determine the exact 

limiting line between acceptable and unacceptable product 

quality indicators. In the general case, the conversion of           

y  to d is carried out according to a more complex law. For a 

two-sided restriction of the form  ymin ≤ y ≤ ymax,  the 

conversion of the measured response y to the scale d is 

performed using the expression:         

                                        n
yd  exp                       (2.36) 

where: n − positive number (0 < n < ∞),  not necessarily an 

integer; 

                                  
 
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minmax2

yy

yyy
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                    (2.37) 

In this case, the exponent of the power n can be calculated by 

assigning a value of d to some value of  y (preferably in the 

interval  0,6 < d < 0,9) using the formula:  
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 For one-sided constraints of the form y ≤ ymax  or           

y  ≥ ymin,  more convenient form of converting  y  to d is 

another exponential dependence: 

                                  )]exp(exp[ yd                       (2.39) 

 where: y – dimensionless value of the output variable, which 

is determined from the expression                                 

                   y = b0 + b1y                             (2.40) 

The coefficients  b0  and  b1  can be calculated by specifying 

the corresponding desirability values d for two values of the 

property y, preferably in the interval  0,2 < d < 0,8.  In 

practice, one-sided specification is most common.  

Having several responses converted into a scale d, it is 

possible to combine from these different d some generalized 

desirability index  D  by means of arithmetic operations. In this 

case, if one of the responses is absolutely unsatisfactory, the 

generalized desirability function D should be equal to zero 

regardless of the levels of the different responses. A 

mathematical expression that meets these requirements is the 

geometric mean of the partial desirability functions, i.e.: 

                                     k
kdddD 21                          (2.41) 

       where:  k – number of optimization criteria 

Provided that some one di = 0, then the corresponding  D is 

also zero. Moreover, the generalized desirability function is 

most strongly influenced by the smallest values of  di. At the 

same time, D = 1 only when all partial desirabilities  di = 1       
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(i = 1, 2, ... k). It is also important that expression (2.41) allows 

us to apply to partial desirabilities and the generalized indicator 

a single method of specifying the basic desirability scale 

estimates given in Table 2.3, if  di = d1  = d2 =... dk = 0,37, then 

D = 0.37, etc. With the generalized desirability function, all 

computational operations can be performed, as with any system 

response, and  D  can be used as an optimization criterion in 

the study and optimization of the process. It should be borne in 

mind that the set of possible values of  D is limited to D ≤ 1. 

The most effective application of the generalized desirability 

function turned out to be in the development of recipes in the 

technology of obtaining new polymer materials.  

  

2.5. Software for planning experiments, developing 

mathematical models, and optimizing the composition of 

multicomponent systems 

2.5.1. Software for constructing an experimental design 

for ternary mixture systems. To build a work plan for 

conducting research on various three-component mixture 

systems of all possible ratios of components, we have 

developed software (software) [102,103]. The program allows 

you to solve one of the important problems that may arise 

during planning, namely, the uneven content of the mixture 

components (the concentration of one or two of them is less 

than the content of the others by an order of magnitude or 

more). The software was created in the Builder environment in 

the C++ language [104-106]. 

 In order to optimize the composition of compositions 

that are mixtures of  q  different components, the simplex-grid 
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method is used, since it is the most suitable for studying 

mixtures. The variables ix  ),...,2,1( qi  of such systems 

are the proportions (relative to the content) of the i-th 

components of the mixture and satisfy the condition (2.25).  

 When developing an experimental design, the factor 

space is operated in the form of simplexes, therefore, the 

created software provides for a transition from ordinary 

Cartesian coordinates to a special simplex system. The points 

that determine the relative content of each component are laid 

out along the corresponding faces of the simplex. At the 

vertices of the simplex, each ix = 1, and then they are 

determined by the lines (or surfaces) of the level parallel to the 

opposite side (or face) of the simplex. For a three-component 

mixture on the plane, the simplex has the form of a triangle 

with vertices х1х2х3 (Fig. 2.9).  
                 

 
Fig. 2.9 – Simplex area for experiment planning 
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 Each vertex of the simplex is an independent component of the 

mixture; the points forming the edges of the triangle 

correspond to binary systems of pairs of ingredients, the points 

in the middle of the simplex are a mixture of a mixture of all 

three components. The value of the content of the first 

component (х1) at the vertex х1is equal to one, and on the 

opposite side х2х3 is zero. 

 In q-component mixtures, the content of ingredients can vary 

from 0 to 1 or within this interval, which is determined by the 

requirements for the properties of the created compositions. In 

this case, it is necessary to investigate only the (q-1)-

dimensional simplex subdomain of the full      (q-1)-

dimensional area. The subdomain is given by restrictions on 

the content of all components. The developed program allows 

you to automatically obtain a factor space for conducting an 

experiment for all possible combinations of the composition of 

the compositions, including those with uneven content of 

components. A limited area of irregular shape, which is a factor 

space for conducting an experiment, is obtained by introducing 

restrictions on the concentration of ingredients. For this 

purpose, the program provides an option to enter restrictions on 

the content of the components of the mixture (Fig. 2.10). The 

limited region of irregular shape, i.e. the factor space of the 

experiment for compositions with comparable ingredient 

contents, is shown in Fig. 2.11.   
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Fig. 2.10 – Section of the program working form with restrictions on 

the content of mixture components 

 
 

       
Fig. 2.11 – Factor space for conducting an experiment 
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Planning experiments using the simplex-lattice method 

is carried out in a subregion “similar” to the original simplex, 

i.e. in the polygon it is necessary to select a triangular 

subregion. This triangle, firstly, must lie completely inside the 

“cut out” area and, secondly, most fully cover it. The program 

allows you to construct a region in the form of a triangle inside 

the found subregion. The user can interactively select a 

triangular region inside the found polygon, for which he must 

first click the “Subregion” button, and an enlarged subregion 

for conducting the experiment appears on the monitor screen 

(Fig. 2.12).  

              
Fig. 2.12 – The enlarged subregion obtained under the given 

constraints 
 
  The triangular subregion can be selected in various 

ways (Fig. 2.13 a, b). 
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                    а)                                                              b)                 

Fig. 2.13 – Different options for choosing a triangular subregion 

 
The determination of the vertex points of the triangle can be 

carried out in two modes: by selecting the option "subregion 

vertex point selection mode", or by canceling it. Fig. 2.14 (a, b) 

shows the subregions with the option canceled. 
 

  
                     а)                                                           b)                 

Fig. 2.14 – Different options for selecting a triangular 

subregion with the "Subregion vertex selection mode" option 

unchecked 
 
The researcher selects the most appropriate area of the 

triangular shape based on his empirical experience. The next 

option is to select a subarea that most fully covers the possible 
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combinations of the ratios of the components in the 

composition. Then, by clicking the “Get values” button, the 

user sees on the screen that the selected triangle is inside the 

complete simplex, and in the window on the right - the 

coordinates of its vertices in the simplex system (Fig. 2.15).  

      

 
   Fig. 2.15 – Constructed subdomain inside the full simplex 

 
The properties of the system can be described by 

different models taking into account specific requirements for 

them - first of all, this is adequacy and simplicity. The created 

software provides the possibility of using three types of 

models: quadratic, incomplete cubic and cubic. The calculation 

of the coefficients of the equations is carried out according to 

the matrix relation X = AZ, where the matrix elements: A - 

coordinates of the vertices of the simplex, X and Z - matrices of 
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plans: for the desired working and for the complete simplex, 

respectively. 

By default, the program calculates the dependence of 

the output variables on the content of the mixture components 

according to the incomplete cubic model. By clicking the 

"Calculation" button, the user receives an experiment plan on 

the screen (Fig. 2.16, table "Result"). 

               

  
   Fig. 2.16 – Plan of experiment for the incomplete cubic model 

 
For convenience, the experiment plan can be saved to a 

file.  The created file stores the experiment plan (Fig. 2.17). 
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Fig. 2.17 – The result of the program - a saved experiment plan 

 

As already mentioned, the program allows you to build 

experimental plans also using quadratic and cubic models. To 

do this, you need to return to the form with calculations (Fig. 

2.16) and select the appropriate options on the form (Fig. 2.18, 

2.19). 
 

     
                       

Fig. 2.18 – Plan of experiment for the  quadratic model 
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          Fig. 2.19 – Plan of experiment for the  cubic model 

 
Experiment plans for these models can also be written to a files 

(Fig. 2.20). 
 

 

 

Fig. 2.20 – The result of the program - saved experiment 

plans 
 
2.5.1.1. Experimental plan for ternary systems with 

incommensurable component contents. The developed software 

makes it possible to plan an experiment, in particular, for three-

component compositions, in which one of the components is 
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added in a much smaller amount compared to the other two 

ingredients (the difference can be 50÷1000 times). Such a task 

arises, in particular, when planning experimental studies on the 

influence of substances in the nanoscale on the properties of 

polymer compositions. When interactively planning an 

experiment in systems of such a composition, the factor space 

has a very small size (contracted into a strip or point), which 

makes it necessary to make an uneven increase in the planning 

area with the obligatory preservation of the correspondence of 

mathematical coordinates. The created program allows you to 

perform this operation [103]. 

 The user begins work by entering restrictions on the 

content of the mixture components and clicks the “apply level 

lines” button (Fig. 2.21)     

                         
Fig. 2.21 – Section of the program working form with restrictions on 

the content of mixture components 
 
The factor space for conducting the experiment appears on the 

monitor in the form of a strip (Fig. 2.22). 
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       Fig. 2.22 –  Factor space contracted into a strip 

 
Further, when clicking the "subarea" button, in the 

previous version of the program, which did not provide for 

uneven enlargement of the subarea, the user would receive the 

following result (Fig. 2.23). 
  

                  
Fig. 2.23 – Increased factor space compared to the previous version 

of the program 
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In this case, interactive planning is impossible due to the small 

size of the factor space. 

The uneven increase in the planning area provided for 

in the developed program is achieved automatically by the 

algorithm built into it by introducing a coefficient that changes 

the size of the subarea in a certain direction to the appropriate 

size while maintaining the correspondence of mathematical 

coordinates (Fig. 2.24).  
  

              
 

Fig. 2.24 – Unevenly enlarged factor space 

 
The user interactively selects three points within the 

subdomain and the factor space of the experiment appears on 

the monitor screen in the form of a triangle (Fig. 2.25). 
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                      Fig. 2.25 – Experiment planning area 

 
By clicking the “Get values” button, the researcher 

receives on the screen the area of the experiment, which is 

located in the complete simplex, on which the triangle is not 

visually visible (Fig. 2.26).  
 

           
     Fig. 2.26 – The experimental area is located in the full simplex 
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 The program by default outputs a plan matrix for an 

incomplete cubic model (Fig. 2.27). 
 

      
Fig. 2.27 – Plan of experiment for an incomplete cubic model has 

been constructed 
 
The experiment plan can be saved in a file (Fig. 2.28). 
 

                       
Fig. 2.28 – Saved experiment plan 

 
Experiment plans for quadratic and cubic models are 

constructed similarly (Fig. 2.29, 2.30) and saved in files (Fig. 

2.31). 
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Fig. 2.29 – Plan of experiment for a quadratic model 

 

 
 

Fig. 2.30 – Plan of experiment for a cubic model 
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                                а)                                               

                                                                                                                                     
                         b)    

 
Fig. 2.31 – Saved plans of experiments for quadratic (a)                 

and cubic (b) models 
 

Thus, the developed software has a user-friendly 

interface and does not require additional knowledge of 

computer technology. The software can be used for automated 

interactive planning of an experiment in the process of 

conducting scientific research on mixture systems (polymers 

modified with inorganic and organic additives, nanofilled 

polymer dispersions, fiberglass, polymer concretes, etc.) in 

research laboratories and at enterprises of various industries. 

The program allows you to plan an experiment for all possible 

ratios of ingredients in three-component compositions, 

including solving one of the important problems that may arise 

during planning, namely: the uneven content of mixture 

components, in which the concentration of one or two of them 

is less than the number of others by at least an order of 

magnitude.  

Thus, in C++ software has been developed that allows 

interactively building an experiment plan for various ternary 

mixtures using three types of models of dependence of the 
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output parameters on the content of the components - 

incomplete cubic, cubic and quadratic. The program allows 

solving the problem of experiment planning for compositions 

in which the content of one or two components differs from the 

others by hundreds and thousands of times. This is achieved 

thanks to the algorithm built into the software, which ensures 

an uneven increase in the area of the factor space with the 

obligatory preservation of the correspondence of mathematical 

coordinates. 

2.5.2. Software for constructing an experimental design 

for four-component mixture systems. In order to automate the 

process of experimental research on optimizing the 

composition of multicomponent mixtures, we developed 

software for building a work plan of experiments for all 

combinations of ingredient ratios in four-component systems 

[31]. The program was created in the Delphi environment [107-

109]. The software was developed on the basis of the simplex-

lattice method, while the ratio of ingredients in the 

compositions satisfies condition (2.25), which determines the 

region of admissible variables, the so-called simplexes [96]. As 

already noted, for a four-component system it has the form of a 

tetrahedron, the faces of which correspond to the simplexes of 

three-component mixtures, and the points inside are four-

component ones. To build models in simplex-lattice plans, 

experimental points are symmetrically located mainly on the 

periphery of the simplex. To take into account the results of 

experiments inside the simplex when developing the software, 

we used simplex-centroid plans, which contain points with 

coordinates: )0;...;0;1( ; )0;...;0;2/1;2/1( ; …; )/1;...;/1;/1( qqq , 
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as well as all points that can be obtained by permuting these 

coordinates [150]. In this case, the experimental points are 

located at the vertices of the simplex, the midpoints of the 

sides, the centers of the faces of different dimensions, one point 

is in the center of the simplex. In this case, from the  12 q  

experimental data, q points have one non-zero component; 2

qC ; 

3

qC ;  4

qC   - two, three and four non-zero ones, respectively, 

and one point contains all the components.  

To construct the experimental plan, we took a 

conditional mixture of two polymers (A, B) and two modifying 

additives (c, d), the relative concentrations of which were x1, 

x2, x3, x4 , respectively. Two-sided restrictions were imposed on 

the content of individual ingredients of the system: 

                  qibxa iii ,1,10                    (2.45) 

 where: ii ba ,   upper and lower limits of each 

component, which must not be equal to each other. 

The development of plan of experiment that meets some 

optimality criterion begins with determining the coordinates of 

candidate points, namely: polygon vertices, edge midpoints, 

face centers, and the common centroid. For this purpose, the 

software uses the McLean–Anderson method [99], according to 

which all possible combinations of the lower and upper levels 

ia  and ib  are selected and for each component, skipping the 

content of one of them. For the four-component mixture under 

study, one of the options may be 421 ;;; bba  , while the total 

number of combinations (at q=4) is 32. In the created software, 

to select all possible combinations of ingredients in the 
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mixture, the researcher performs the corresponding procedure: 

procedure convert (a, b: vector1; var x1, x2, x3, x4: vector). 

The input of this procedure is given by restrictions on the 

content of each of the components of the mixture. They are 

specified on the form, and the program reads the data recorded 

in the Edit component. The variable a takes the values of the 

lower levels, and the variable b takes the values of the upper 

levels of the content for each ingredient of the mixture. The 

output of the procedure is four one-dimensional arrays x1, x2, 

x3, x4, the elements of which are the values of the coordinates 

of the vertices of the polyhedron corresponding to the content 

of the components of the mixture.   

The resulting polyhedron has faces of the first and 

second orders. Faces of the first order are edges that have two 

identical coordinates, and faces of the second order are edges 

that have one identical coordinate. The program performs the 

procedure: procedure grani (x1, x2, x3, x4: vector; var ox1, 

ox2, ox3, ox4: vector), during which the points are compared, 

and those of them that have one identical coordinate form a 

face. In this case, the vertices that are repeated are excluded. At 

the output, we have four one-dimensional arrays ox1, ox2, ox3, 

ox4, which are the coordinates of the centers of the selected 

faces. The dimension of the resulting polyhedron is always q-1.  

Further, among the obtained combinations, it is 

necessary to select those for which the sum of the 

concentrations is less than one, and add the content of the 

component that was omitted. To do this, the procedure is 

performed: procedure rebra (x1, x2, x3, x4: vector; var dx1, 

dx2, dx3, dx4: vector), at the input of which the coordinates of 
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the vertices of the polyhedron x1, x2, x3, x4 are given. During 

the procedure, all points are compared with each other. Points 

with two identical coordinates are searched for. These points 

form the edges of the polyhedron. At the output of the 

procedure, we have one-dimensional arrays dx1, dx2, dx3, dx4, 

the elements of which correspond to the coordinates of the 

centers of the edges.  

     Variants with added components that satisfy conditions 

(2.25) and (2.45) represent the vertices of the desired 

polyhedron, which in the studied simplex forms an octagon. 

The resulting polyhedron has faces of the first and second 

orders: the first order is edges that have two identical 

coordinates, and the second is one coinciding coordinate. In 

this case, the vertices that are repeated are automatically 

excluded. The dimension of the resulting polyhedron is q-1.  

The next step is to select the r-dimensional faces, or 

hyperfaces of the polyhedron, which are within 21  qr . 

At 1r  it be an edge, at 2r  is a face, at 3r  is a 

hyperface. A face with dimension r is formed by a group of 

vertices that have the same coordinates in the number 1 rq . 

In the four-component system, a three-dimensional polyhedron 

is formed. Its edges have vertices with two identical 

coordinates ( 2114  ), and the faces have vertices with one 

identical coordinate ( 1124  ). In this case, the maximum 

number of vertices with the same coordinates 1 rq  is 

selected, because they form the  r-dimensional face. The upper 

limit of the total number of  r-dimensional faces is calculated 

by the formula: 



 111 

                        




 
2

11

11 2
q

rq

rqrq

qC                           (2.46) 

In each of the selected faces, the coordinates of the centers 

(centroids) are determined as the average value of the 

coordinates of the vertices that form the corresponding face. 

When executing the procedure: procedure centr(x1, x2, x3, x4: 

vector; var cx1, cx2, cx3, cx4: real) the values of the 

coordinates of the candidate points for the plan are input to it.  

Next, the coordinates of the common center (centroid) of the 

polyhedron are calculated as the average value of the 

coordinates of all vertices. The output is the coordinates of the 

common center of the polyhedron cx1, cx2, cx3, cx4 (Fig.2.32).   
 

      
Fig. 2.32 – Programmatic determination of the common center of a 

polyhedron (centroid) 
 

 As a result, 27 candidate points for the experimental 

design are obtained. 
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 As a response function that connects the initial 

parameters with the factors that change during the experiments, 

y  =  φ (x1, x2, x3, х4)  we chose an incomplete cubic model, 

which has the following form: 

        



qkji

kjiijk

qji

jiij

qi

ii xxxxxxy
111

ˆ        (2.47) 

To determine the numerical values of the coefficients of the 

polynomial (2.47), it is sufficient to have 14 points of the plan 

[96]. In order to select specific points for conducting 

experiments, the developed software uses a method of drawing 

up a plan containing a given number of experiments. It consists 

in the fact that the specified points must be maximally distant 

from each other in the factor space allocated on the simplex by 

restrictions. For this, the distance between all candidate points 

and the center of the octahedron (dmn) is calculated by the 

formula:  
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where:  m  and  n – furst and second points,  і – 

component number 

 When executing the procedure: procedure vids_centr 

(x1,x2,x3,x4:vector; cx1,cx2,cx3,cx4: Real; a,b:vector1; var 

dc:vector) the distance from the candidate points in the plan   

x1, x2, x3, x4  to  other points cx1, cx2, cx3, cx4  is determined by 

the formula (2.48). The input parameters for it are the 

coordinates of the candidate points in the plan x1, x2, x3, x4 

and the coordinates of another point cx1, cx2, cx3, cx4  to 

which the distance needs to be found (in particular, this may be 
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a point − the common center of the figure). In addition, the 

values of the restrictions on the content of the mixture 

components (arrays a, b) are passed to the procedure. The 

result of the procedure is a one-dimensional array dc 

containing the distances from each point to the center (or 

another point).  

Procedure execution: procedure max_d 

(x1,x2,x3,x4,dc:vector; var max:integer) determines the 

number of the array element that has the maximum value of 

this distance. The input parameters of the procedure are one-

dimensional arrays x1, x2, x3, x4, corresponding to the 

coordinates of the polyhedron, and a one-dimensional array dc, 

the elements of which are the distances from the points of the 

polyhedron to its center.  

To select the points for conducting experiments, the 

procedure is performed: procedure vibir_tochok (tx1, tx2, tx3, 

tx4, dc: vector; dn: Real; var px1,px2,px3,px4: vector). In the 

software, the distances ( 1id ; 5id ) are calculated between each 

of the obtained points and the remaining points according to 

the formula (2.48). Then the researcher selects the normalized 

distance (
'

mnd ), the value of which affects the number of points 

in the plan. It should be selected smaller when a larger number 

of points is required, and larger if their number is small 

enough. The normalized distance was selected, guided by the 

condition:  

                      2

1

' )2( ср

цmn

ср

ц ddd  ,                          (2.49) 
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where: ср

цd  − average distance of a point from the 

center 

 The software assumes: ср

цd =0.7424, and the normalized 

distance 
'

mnd =1.0019. The coordinates of the points of the 

polyhedron  tx1, tx2, tx3, tx4  are given as parameters to the 

procedure input, the vector of distances from which to the 

center dc and the normalized distance dn are selected from 

condition (2.49). The procedure determines two points that are 

at the greatest distance from the center and from these points to 

the remaining candidate points. Points for which the distances 

to the two already selected points of the plan are less than the 

normalized one are included in the plan, and the rest are 

filtered out. Candidate points are arranged in order of 

decreasing distance from them to the center of the polyhedron. 

The first points in the arrays are those that are located at the 

maximum distance from the center of the figure. Then points 

that have a distance to the two selected points less than the 

normalized one are discarded. The procedure outputs four one-

dimensional arrays px, px2, px3, px4  containing the 

coordinates of the points included in the plan. If there are not 

enough points in the plan to build the model, it is necessary to 

reduce the selected norm, and if there are too many points, then 

you can either increase the normalized distance, or repeat all 

the above actions for the candidate points, not taking into 

account those that are already included in the plan. For the 

selected example, together with the two points that have 

already been selected for the experimental plan, we obtained 15 

points, but only 14 are needed, so from these points we 
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discarded the one that has the smallest distance to the common 

center of the polyhedron.  

Thus, software has been developed using the simplex-

centroid method according to the McLean–Anderson 

algorithm, which allows obtaining an experimental plan for 

studying a four-component system, which contains 14 

necessary and sufficient points. 

2.5.2.1. Computer-aided planning of experiments and 

optimization of composition composition to obtain 

microfibrillar filaments with improved properties. As shown in 

section 1.2, reducing the diameters of individual filaments to 

micro- and nano-sizes and introducing substances in their 

structure in the nanoscale is an effective method of modifying 

synthetic fibers and threads. Adding special substances to the 

mixture of incompatible polymers - compatibilizers [66], 

nanoadditives [47,59,60,69] or their compositions [67,68] 

allows you to control the process of  in situ  formation of fibrils 

of one component in the matrix of the other. Thus, introducing 

nanoparticles of the original [59,60] and modified silica [47] 

into the melt of a PP/CPA mixture allows you to obtain 

complex threads from nanofilled PP microfibrils with a high 

specific surface area and improved mechanical properties. 

Simultaneous addition of carbon nanotubes and sodium oleate 

(compatibilizer) to the PP/SPA mixture is more effective than 

individual substances [68]. Polyethylene terephthalate (PET) 

fibrils in a PP matrix with maximum length and minimum 

diameter were obtained by modifying a PET/PP blend using 

grafted maleic anhydride and TiO2 nanoparticles [28]. 
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 When choosing the composition of the composition for 

obtaining fine-fiber materials, it is important to combine their 

desired indicators with the maximum content of the dispersed 

phase component, since the technology for their production 

from melts of polymer mixtures involves the extraction of the 

matrix polymer from a composite monofilament or film [59]. 

This is due to the fact that increasing the concentration of the 

dispersed phase polymer is a prerequisite for improving the 

economic performance of production and reducing the 

environmental load on the environment. 

Based on this, we conducted research on optimizing the 

composition of the nanofilled compatibilized 

polypropylene/copolyamide blend with the maximum possible 

PP content to obtain complex microfibrillar yarns with 

predetermined characteristics. To reduce the time spent on 

studying the four-component PP/CPA/silica/siloxane 

composition, the experimental plan and the creation of a 

mathematical model were carried out using the developed 

software [31]. As an equation that establishes the relationship 

between the content of the components of the studied system 

and the properties of microfibrillar yarns, the program provides 

an incomplete third-order polynomial. To estimate the 

numerical values of its coefficients, an experimental plan was 

drawn up in the studied region of the factor space. The input 

variables were: х1, х2, х3, х4 - relative concentrations of PP, 

SPA, nanoadditive and compatibilizer, respectively. The 

following restrictions were imposed on the concentrations of 

the ingredients of the mixed composition:   

              0,2≤ x1 ≤0,45; 0,55≤ x 2 ≤0,80;  
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        0,005≤ x3 ≤0,040; 0,001≤ x4 ≤0,010                (2.50) 

In this case, the condition (2.25) must be met. The following 

initial parameters were selected: у1 – average diameter of PP 

microfibrils; у2 – strength of complex microfibrillar threads at 

break;  у3  – hygroscopicity of threads. 

 In the created program, restrictions are 

introduced on the content of each of the components of the 

mixture – arrays  a and b (Fig. 2.33).  
  

 
Fig. 2.33 – Introduction of restrictions on the content of mixture 

components 
 

Next, the program performs the following actions step by step, 

according to the described algorithm: 

 - determines the coordinates of the vertices of the 

polyhedron; 

 - selects the r-dimensional faces of the polyhedron 

( 21  qr ) and determines the coordinates of their 

centroids; 
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 - calculates the coordinates of the common center of the 

polyhedron; 

 - finds the distance from the candidate points in the plan 

to the common center and determines the two points that lie at 

the greatest distance from the center; 

 - eliminates points for which the distance to the two 

selected ones is less than the normalized one (for the system 

under study, the following normalized distance was chosen: 
'

mnd =1.0019); 

 - determines the coordinates of the points that 

entered the plan.  

Thus, in a few fractions of a second, the program 

creates an experimental plan for studying the composition of 

PP/CPA/silica/siloxane according to the McLean–Anderson 

algorithm, which contains 14 required points (Fig. 2.34). 

Experimental studies were conducted using a 

thermodynamically incompatible PP/SPA mixture, in which 

the dispersed phase was isotactic polypropylene, and the 

dispersion medium was alcohol-soluble copolyamide. 

Pyrogenic silica (SiO2) with a specific surface area of 324 m2/g 

was chosen as the nanofiller, and an organosilicon substance 

(polyethylsiloxane) was chosen as the compatibilizer. The 

components were mixed in a worm-disc extruder. 
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Fig. 2.34 – Plan of experiment for studying the composition of 

PP/CPA/silica/siloxane 
 

The modifying additives were previously introduced into the 

PP melt, and the resulting granules were mixed with the matrix 

polymer (CPA). Composite monofilaments were formed on a 

laboratory stand at a temperature of 190 0С, with a draw ratio 

of 1000 %, and their thermoorientation drawing was carried out 

at a temperature of 150 0С with a multiplicity of 5. Complex 

threads from nanofilled PP microfibrils were obtained by 

extracting the matrix polymer from composite threads with an 

aqueous solution of ethyl alcohol. The strength of complex 

threads at break was determined using a KT 7010 AZ brand 

tearing machine. The hygroscopicity of the threads was 

estimated by the weight method at an air humidity of 98 %. 

The processes of PP structure formation in the matrix were 
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studied using an MBD-15 optical microscope, determining the 

average diameter of microfibrils in the bundle after extraction 

of CPA from the composite extrudate.  

Experimental studies carried out in accordance with the 

developed plan showed that for all compositions a 

microfibrillar structure is realized. The ratio of siloxane and 

silica significantly affects the formation of the morphology of 

the PP/SPA mixture (the average diameter of microfibrils 

varies from 1.6 to 7.1 μm). All modified systems are stably 

processed into composite monofilaments. After extraction of 

the matrix polymer from them, complex polypropylene 

microfibrillar filaments were obtained, the properties of which 

are given in Table. 2.5. 

Тable 2.5 –  Effect of mixture composition on the average diameter 

of PP microfibrils and on threads properties 
 

N of 

point 
of plan 

Average diameter 

of microfibrils, μm 
Threads 

strength, MPa 

Hygroscopicity 

of threads, % 

1 1,6 250 0,51 

2 4,4 280 0,43 

3 3,3 345 0,69 

4 7,1 410 0,63 

5 3,4 365 0,37 

6 6,2 325 0,31 

7 3,5 380 0,40 

8 5,4 355 0,29 

9 2,7 420 0,53 

10 6,5 400 0,48 

11 4,2 410 0,34 

12 3,7 445 0,68 

13 4,4 390 0,59 

    14 3,2 470 0,73 
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Based on the data in Table 2.5, the coefficients of the 

polynomial (2.47) were calculated by the least squares method 

in matrix form. The calculations were performed using a 

previously created program in the Object Pascal language [33]. 

As a result, a system of equations (2.51) was obtained, which is 

a mathematical model describing the process under study: 
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                                                                                            (2.51)                                                                                                                             

 After determining the coefficients of the regression 

equation, a statistical analysis of the results was performed - 

the equations were checked for adequacy, i.e. the ability of the 

model to predict the results of research in a certain area with 

the required accuracy [97]. The adequacy of the model was 

checked using software developed by us earlier, which uses a 

fairly common method, which consists in comparing the 

estimates of the error variances between the response values 

calculated by the regression equation at some points of the 

factor space, on the one hand, and on the other hand, obtained 

independently [33]. This is equivalent to testing some linear 

hypothesis by calculating and analyzing the corresponding 

Fisher F-ratio. This method requires the presence of several 

observations for y at least at one of the points xі. For the 

created model, 15 different points were determined, each of 

which is repeated three times (i.e., a total of 45 observations). 
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The input file of the observation points, which contains the 

values of  xі, is shown in Fig. 2.35.   

             
                           …            …          …                             

  
     Fig. 2.35 – File x.txt – input data of observation points 

 

(In this case, Figure 2.35, as well as the following Figures 2.36, 

2.37 and 2.38, for better understanding, data for the first, 

second and last points are presented.)  

 After entering the data xі, the plan matrix for the 

developed model is programmatically generated (Fig. 2.36). 

For the convenience of the user, it is displayed in the form 

window using software created in the C++ language using 

modern programming methods [104,110].  
 

 

                …                 …                 …                 

 
                        

Fig.2.36 – Programmatically generated plan matrix 
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Thus, for the variable y1, the experimental observation data are 

shown in Fig. 2.37. 

                             

                               …    ….      ….. 

                                    
 

Fig. 2.37 – File y.txt – experimental observation data у1 

 
The average values calculated by the software for each 

observation point and the corresponding estimates of the 

regression function for the variable у1of the model (2.51) are 

presented in Fig. 2.38. 
 

                 
                               …         …             … 

                 
 

Fig. 2.38 – The values of the regression function estimates and the 

average values obtained in the created software 
 

 The next step of the software is to determine Fisher's  

F-ratio using formula (2.16) for all output variables of the 

model (2.51). The obtained values are shown in Fig. 2.39. 
 



 124 

 
                         а) 

 
                        b) 

 
                       c) 

Fig. 2.39 – FF-ratio obtained in the software application 

for у1 (а),  у2 (b) та у3 (c) 
 

According to the general provisions, the hypothesis of 

the adequacy of the model ŷ  is not accepted at the significance 

level  if the ratio (2.16) exceeds the level quantile (1  ) of 

the Fisher distribution, and in other cases it is accepted. 

Provided that m > p, the ratio 
2

2

2

1

S

S

 

has the form of the Fisher 

distribution [97]. The specified check is implemented by the 

software.  

The results obtained indicate that the developed 

mathematical model is adequate: for the significance level     

= 0.05 = ),( mnpmF   = F(1514, 4515) =                

F(1, 16)=4.17, i.e. for all y from model (2.51) the calculated 

dispersion ratio 
2

2

2

1

S

S

 

is less than the value ),( mnpmF  .  

The optimal content of ingredients in the studied four-

component mixture was determined by the multi-criteria 

optimization method using software developed by us 

[111,112]. Multi-criteria optimization is the process of 

simultaneous optimization of several conflicting objective 

functions in a certain domain of definition. In the general case, 

the multi-criteria optimization problem is described by 

expression (2.30), while the objective functions that are 
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investigated at the maximum are transformed into functions 

that are investigated at the minimum by formula (2.31) [100]. 

For a nano-filled compatibilized polypropylene/copolyamide 

mixture, the multi-criteria optimization problem has the 

following form: 

 3241312143211 89.783.4637.678.233.517.424.546.3 xxxxxxxxxxxxy

    min399594.497.035.16105.4961.24 4324314213214342  xxxxxxxxxxxxxxxx                       

 3223413121443212 112828786.5487.4579.2638.4084.3409.359 xxxxxxxxxxxxy 

max718904.2481.446515523111034 432431421321434223  xxxxxxxxxxxxxxxx

 3241312143213 00.872.1958.186.069.301.179.085.0 xxxxxxxxxxxxy            

max3.11634.179.947.4087.1678.9 4324314213213232  xxxxxxxxxxxxxxxx                    

                 45.02.0 1  x                                                      (2.52) 

                 8.055.0 2  x  

                 04.0005.0 3  x  

                 01.0001.0 4  x  

                 14321  xxxx                                                                          

 To solve this problem, we used the scalarization 

method, that is, we converted it to the solution of some scalar 

(single-criteria) problem. Scalarization was performed by the 

linear convolution method, using software [111]. The 

coefficients of the problem variables (у1, у2, у3) are read from 

the file у.txt (Fig. 2.40).  

       

 
Fig.2.40 – File y.txt – coefficients of the mathematical model 
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 Fig. 2.41 shows the initial data of the problem. 

 

 
Fig. 2.41 – Initial data of the multi-criteria problem 

 

 The convolution weights, which determine the degree 

of importance of each criterion: 34.01  ; 33.02  ;  

33.03   - are specified on the software form. 

 In the software, the minimization of the objective 

functions that are investigated to the maximum is carried out 

according to the formula:    yy maxmin  . Next, the linear 

combination of the objective functions is minimized, that is, 

the following problem is solved:  

(2.53) 

 

 By clicking the “reduce problem” button, the form (Fig. 

2.42) displays the single-criteria problem that was obtained as a 

result of the calculations.  

min332211  yyyF 
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Fig.2.42 − The optimization problem is transformed into a single-

criteria one 
 

Thus, using software, a mathematical model was 

created in the form of a single-criteria problem (2.54), which 

determines the influence of the nanoadditive and 

compatibilizer on the dimensional characteristics of 

polypropylene microfibrils and the properties of complex 

threads. 

 214321 38.15049.8682.13381.11087.117 xxxxxxF     

 324131 56.37733.94039.179 xxxxxx                          

 4213214342 11.15065.165952.75108.336 xxxxxxxxxx  

        min38.2512073.80 422431  xxxxxx  

               45.02.0 1  x                                                         (2.54) 

              8.055.0 2  x  

              04.0005.0 3  x  

              01.0001.0 4  x  

              14321  xxxx                                                                                

The developed model is much simpler than the multi-criteria 

optimization problem and can be solved by one of the known 



 128 

methods and used to optimize the four-component 

composition.  

In order to determine the optimal composition of the 

studied mixture, the so-called conditional optimization problem 

was solved, which is associated with optimization under 

constraints on the variables. To move from the conditional 

optimization problem of the studied four-component mixture 

with constraints to the problem without constraints, the penalty 

function method was used [100,101], in which by  xP  the 

function Z will be “penalized” if the constraints are violated 

(i.e., its value is increased), while the minimum of the function 

Z will be located inside the constraint region. Under constraints 

  0xc j
, mj ...,,2,1 ,  function  xP   is written by equation 

(2.33). The minimization problem for the 

polypropylene/copolyamide/silica/siloxane system is to 

minimize function  xfZ   under constraints   0xc j
, 

mj ...,,2,1 , then function Z will have the following form:  

                
 




m

j j xc
rxfrxZ

1

1
,                    (2.55)    

 Provided that x has admissible values, i.e. values for 

which   0xc j
, the function Z will take values that are larger 

than the corresponding ones, and the difference can be reduced 

by r. In the case when x has admissible indices, at the same 

time approaching the boundary of the constraint region, and at 

least one of the functions  xc j
 is close to zero, the values of 

the functions  xP  and  Z will be quite large, i.e. the influence 

of  xP   function is manifested in the formation of a “crest 
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with sharp edges” along the boundary of the constraint region. 

Provided that the search starts from an admissible point and the 

unconstrained function  rx,  is minimized, the minimum 

will, of course, be reached inside the admissible region for 

problems with constraints. Since r is a sufficiently small value, 

to reduce the influence of  xP  at the minimum point, it is 

necessary to make the minimum point of  rx,  the 

unconstrained function coincide with the minimum point of the 

problems with constraints.  

 To solve problem (2.54), the software creates an 

unconstrained function using a penalty: 

 214321 38.15049.8682.13381.11087.117 xxxxxxF          

                 324131 56.37733.94039.179 xxxxxx                                 

 4213214342 11.15065.165952.75108.336 xxxxxxxxxx  

         422431 38.2512073.80 xxxxxx                                

























332211 04.0

1

005.0

1

8.0

1

55.0

1

45.0

1

2.0

1

xxxxxx
r  

  min1
01.0

1

001.0

1 2

4321

44











 xxxx

xx
                        

                                                (2.56) 

 The closer to the minimum the penalty is under the condition 

0r , the smaller the gradient of the function will be. The 

search ends under the condition nr  , where  - is a given 

sufficiently small number. As a result of applying the penalty 

function method, we obtained an unconditional optimization 

problem.  

 To solve the optimization problem of the four-

component composition (2.56), the gradient method with step 
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splitting was used [101]. It is assumed that the functions f(x), 

f  exist and are continuous. The method is based on an 

iterative procedure, which is defined by the formula:  

                     kk

kk Sxx  )()1(
,                        (2.57) 

where:  
k  – step size,  

            
kS  – vector in the direction 

)()1( kk xx 
  

Gradient methods differ only in the way they determine 
k , 

and  
kS  are usually found by solving the optimization problem 

f(x) in the direction of 
kS . The direction 

kS  depends on how the 

function  f(x)  is approximated. To do this, a sequence of points 

 )(kx ,  k=0,1,… is constructed that satisfy the following 

condition:  

                          )()1( kk xfxf  ,  k=0,1,….           (2.58) 

Sequence points  kx  are calculated according to the following 

rule: 

             kk

kk xfgradxx  1
,  k=0,1,…       (2.59)       

The step size 
0  is not changed as long as the function 

decreases at the points of the sequence. The condition for the 

end of the calculations is the fulfillment of the inequalities (the 

gradient  )(kxfgrad  is close to zero):  

                      ni
dx

xdf
i

k

...,,2,1,
)(

)(

)(

                    (2.60)   

or  

             







 



n

i i

k
k

dx

xdf
xfgrad

1

)(
)( )( ,           (2.61) 
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where:    – given a fairly small number 

If the decrease condition is not met, the step size is usually 

reduced by half (
2

k
k


   ) until the inequality 

   )()1( kk xfxf   is met and the calculations are continued. 

Calculations to determine the optimal content of 

ingredients in the studied mixture were performed using 

software [112]. The researcher begins work with the program 

by specifying on the form the starting point:  





















001.0

005.0

551.0

44.0

)0(x
, 

initial values of variables, step size 0000001.00   and a 

sufficiently small number 01.0  (Fig. 2.43).  
                         

  
    Fig. 2.43 – Form “Single-criteria optimization” – entering initial 

values 
 

 Constraints on the problem variables are read from the file 

x.txt (Fig. 2.44). 
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Fig. 2.44 – File x.txt for entering constraints on problem variables 

 

 In this case, the program performs the following steps of the 

algorithm: 

- finds partial derivatives at the point 
)0(x ; 

- checks the stopping condition at  )(kxfgrad ; 

- calculates the value of the function at the initial point 
)0(x , 

)( )0(xF  ; 

- takes a step along the antigradient direction 

)( )0(

0

)0()1( xfgradxx   ; 

- calculates the value of the function at the point 
)1(x .  )( )1(xF  . 

- since )()( )0()1( xFxF  , the step size decreases: 

00000005.0
2

0000001.0
1  . 

- repeats the described operations until   )(kxfgrad .  

           At the last step of the algorithm we obtain the following 

values: 





















02003.0

00099.0

54298.0

43598.0

)(nx
. 

At the same time, the optimal values of the problem variables 

appear in the corresponding fields (Fig. 2.45). 
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      Fig. 2.45 – Form “Single-criteria optimization” – calculation 

results 
 
Thus, using the developed software, the values of the 

variables 4321 ,,, xxxx are calculated, which are the optimal 

contents of the ingredients of the studied four-component 

mixture, and the initial parameters  y1, y2, y3, which 

characterize the dimensional characteristics of PP microfibrils 

and the properties of polypropylene complex threads based on 

them.  

The optimal composition of the PP/SPA/silica/siloxane 

composition for the formation of monofilaments, calculated 

using computer programs at all stages of the study, is as 

follows, wt. %: polypropylene - 43.6; copolyamide - 54.3; 

silica - 0.1; siloxane - 2.0. It was established that the 

simultaneous introduction of nanosized silica and organosilicon 

liquid into the melt of the PP/SPA mixture in an amount of 1.9 

and 0.1 wt. %, respectively, made it possible to implement 
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microfibrillar morphology in the four-component composition. 

At the same time, the polymer content of the dispersed phase in 

it is almost 1.5 times higher than in the unfilled one. Increasing 

the concentration of the fiber-forming polymer in the 

composition is one of the prerequisites for increasing economic 

indicators and environmental safety of the production of fine-

fiber materials by processing polymer mixtures. Studies of the 

properties of complex microfibrillar threads formed from a 

composition of optimal composition have shown their 

significant improvement. Thus, the breaking strength is at the 

level of the best samples of traditional textile PP threads. The 

introduction of siloxane into the composition provides a 

significant increase in the resistance of the studied threads to 

self-erasure (1027 versus 516 thousand cycles for textile 

threads). Modified complex threads are also characterized by 

improved hygienic properties - their hygroscopicity is 17 times 

higher than that of conventional textile threads. 

   Conclusion 

   To study four-component compositions and establish the 

relationship between the content of ingredients and the 

properties of products obtained from them, several software 

programs have been developed that allow you to build an 

experimental plan, develop mathematical models, check their 

adequacy and optimize the composition of the mixture. The 

experimental plan for the influence of the ratio of ingredients in 

a four-component heterogeneous system is created using 

software using the simplex-centroid method. In this case, the 

placement of candidate points in the simplex, which is a 

tetrahedron, is carried out according to the McLean-Anderson 
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algorithm, and the necessary and sufficient number of plan 

points is 14. By calculating the coordinates of the points of the 

experimental plan, the content of which is subject to two-sided 

restrictions, a mathematical model of the process under study is 

obtained in the form of a system of regression equations. The 

model is used to find the optimal composition by the method of 

multi-criteria optimization. For this, the multi-criteria problem 

is converted to a solution by the method of single-criteria linear 

convolution. The transition from a conditional optimization 

problem with constraints to an unconstrained problem is 

carried out using the penalty function method. The optimal 

values of the composition ingredient content and the initial 

parameters characterizing the properties of products based on it 

are determined using the gradient method with step splitting. 

     The developed software was used, in particular, to 

optimize the composition of the polypropylene/copolyamide 

mixture, which contained silica as a nanofiller and 

organosilicon as a compatibilizer. It was found that the 

combined action of both modifying additives with a total 

content of 2.0 wt. % allows to implement the process of 

forming PP microfibrils in the SPA matrix and to achieve an 

increase in the concentration of the dispersed phase component 

to almost 45 wt. %, which is a prerequisite for improving the 

economic and environmental performance of production. 

Complex polypropylene threads obtained from a composition 

with an optimal composition are characterized by increased 

strength, resistance to self-erasing and hygroscopicity.  

    Thus, the developed programs for mathematical 

planning and analysis of experiments in the study of three- and 
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four-component compositions can be used to study any mixture 

systems and will help accelerate the implementation of 

research and obtain products with the best performance from 

them. 

    In conclusion, a few words about the prospects for 

further development of the polymer composites industry 

and software for their creation. Despite the fact that various 

types of composites have been used by mankind since ancient 

times, the goal was usually to overcome some of the 

shortcomings of one of the components, for example, 

increasing the strength of clay bricks by adding straw. Today, 

with a scientifically sound composition of the mixture, 

materials with completely new properties or with significantly 

improved indicators are created. In recent years, polymer 

composites, including nano-filled ones, have played an 

increasingly important role, the total production volume of 

which is of the same order as the production of all metals. At 

the same time, the number of varieties of polymer materials 

exceeds the number of different types of steel. The variety of 

polymer mixtures and composites will further strengthen this 

trend in the future. The main reason for the growing interest in 

such materials in the world is due to the combination of low 

cost and small mass with excellent properties. The main 

problem when using polymer compositions, from the point of 

view of ecology, is the complexity of utilization and return to 

secondary processing of production waste. The solution to 

these problems can be the search for new types of 

biotechnology for the production of both traditional and new 

types of monomers and polymers (including fiber-forming 
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ones). As an example of the implementation of fundamentally 

new technologies, polylactide fibers, films and nanofilled 

plastics obtained on the basis of natural polysaccharides can be 

cited. At the same time, there are no complex environmental 

problems due to the non-toxicity of the initial and finished 

products and the possibility of their recycling, assimilation and 

biodegradation in the environment. 

       The current state and prospects for the development of 

polymer composite materials, including nanofilled fibrous 

ones, are considered, indicating that the advantages of polymer 

mixtures and composites are a prerequisite for their further 

widespread use in various industries, as well as in everyday life 

and, most importantly, in medicine. The research and creation 

of new types of polymer composites will be greatly facilitated 

by the widespread use of mathematical modeling methods 

using software.    
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ADDITION 1 

PROGRAM LISTING 

 Basic procedures and functions for implementing 

interactive experiment planning for a ternary mixture 
 

double minmax(double mas[], int len, bool findmax) 
{ 

   double a; 

   a = mas[0]; 
   for(int i = 0; i < len; i++) 

   { 

      if(findmax == false) 

      { 
         if(mas[i] < a) a = mas[i]; 

      } 

      else 
      { 

         if(mas[i] > a) a = mas[i]; 

      } 

   } 
   return a; 

} 

void DrawGraph(TImage *image) 
{ 

    x0 = floor(image->Width/2); 

    y0 = floor(image->Height/2); 
    image->Canvas->Pen->Color = clBlack; 

    image->Canvas->Pen->Width = 2; 

 

    image->Canvas->MoveTo(x0,0); 
    image->Canvas->LineTo(x0,image->Height); 

    image->Canvas->MoveTo(0,y0); 

    image->Canvas->LineTo(image->Width, y0); 
    image->Canvas->Pen->Color = clBlue; 

    image->Canvas->Pen->Width = 1; 

    for(int i = 1; i < 200; i++) 

    { 
       image->Canvas->MoveTo(x0+i*mashx,0); 
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       image->Canvas->LineTo(x0+i*mashx,image->Height); 

       image->Canvas->MoveTo(0,y0+i*mashy); 
       image->Canvas->LineTo(image->Width, y0+i*mashy); 

    } 

    for(int i = 1; i < 200; i++) 
    { 

       image->Canvas->MoveTo(x0-i*mashx,0); 

       image->Canvas->LineTo(x0-i*mashx,image->Height); 

       image->Canvas->MoveTo(0,y0-i*mashy); 
       image->Canvas->LineTo(image->Width, y0-i*mashy); 

    } 

        image->Canvas->Pen->Color = clRed; 
    image->Canvas->Pen->Width = 2; 

    image->Canvas->MoveTo(x0-a/2*mashx,y0); // X1     

image->Canvas->LineTo(x0+a/2*mashx,y0); // X3 (отложили 5 

вправо) 
    image->Canvas->LineTo(x0,y0-(sqrt(3)/2 * a)*mashy);  

    image->Canvas->LineTo(x0-a/2*mashx,y0); // Замкнули 

    //X1,X2,X3 
    image->Canvas->TextOutA(x0-a/2*mashx-20,y0,"x1"); 

    image->Canvas->TextOutA(x0,y0-(sqrt(3)/2 * a)*mashy-

15,"x2"); 
    image->Canvas->TextOutA(x0+a/2*mashx+15,y0,"x3"); 

 

    image->Canvas->Pen->Color = clBlack; 

    image->Canvas->Pen->Width = 2; 
} 

void ClearGraph(TImage *image) 

{ 
    image->Canvas->Pen->Mode=pmCopy; 

    image->Canvas->Pen->Color = clWhite; 

    image->Canvas->MoveTo(0,0); 
    image->Canvas->FillRect(Rect(0,0,image->Width, image-

>Height)); 

} 

void __fastcall TForm1::ButtonDrawClick(TObject *Sender) 
{ 

    ClearGraph(Image1); 
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    DrawGraph(Image1); 

           GroupBox1->Visible=true; 
         Form1->ScrollBox1->HorzScrollBar->Position=1111; 

      Form1->ScrollBox1->VertScrollBar->Position=961; 

       Form1->ScrollBox1->Height/2; 
} 

double max(double x, double y) 

{ 

    if (x < y) { 
        return y; 

    } 

    return x; 
} 

double min(double x, double y) 

{ 

    if (x > y) { 
        return y; 

    } 

    return x; 
} 

bool thc(double x, double y, double z, double w, double a, double b) 

{ 
    double k, c,res; 

     bool flag=false; 

    if (z == x) { 

        return (a == x && b >= min(y, w) && x <= max(y, w)); 
    } 

    k = (w - y) / (z - x); 

    c = y - k * x; 
     res= a * k + c; 

       flag=floor(b*10000000) == floor(res*10000000); 

    return flag; 
} 

//------------------------------------------------------------------------ 

void __fastcall TForm1::Button1Click(TObject *Sender) 

{ 
 ClearGraph(Image1); 

    DrawGraph(Image1); 
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Button4->Enabled=true; 

    double kx1,ky1,kx2,ky2,kx3,ky3; 
    kx1 =(double) StrToFloat(Form1->Edit1->Text); 

    ky1 =(double) StrToFloat(Form1->Edit2->Text); 

    kx2 = (double)StrToFloat(Form1->Edit3->Text); 
    ky2 = (double)StrToFloat(Form1->Edit4->Text); 

    kx3 =(double) StrToFloat(Form1->Edit5->Text); 

    ky3 = (double)StrToFloat(Form1->Edit6->Text); 

      float r=0.0001; 
    float rr=0.01f; 

    float rrr=0.001f; 

    float rrrr=0.0001f; 
    double t=0.0001; 

    double tt=0.01; 

    double ttt=0.001; 

    double tttt=0.0001; 
    float k; 

    int l=r; 

    //-------------------------------------- 
    DrawRegions(kx1,ky1,kx2,ky2,kx3,ky3); 

//========================================== 

   double eps=0.000; 
   if(kx1==0) 

    { 

    kx1=kx1+eps; 

    } 
    if(kx2==0) 

    { 

    kx2=kx2+eps; 
    } 

    if(kx3==0) 

    { 
    kx3=kx3+eps; 

    } 

    if(kx1==1) 

    { 
    kx1=kx1-eps; 

    } 
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    if(kx2==1) 

    { 
    kx2=kx2-eps; 

    } 

    if(kx3==1) 
    { 

    kx3=kx3-eps; 

    } 

    float test; 
    test=100*kx1; 

    float test2=0.00002,test3; 

    test2=100*test2; 
    Kfx1 = kx1; 

    Kfy1 = ky1; 

    Kfx2 = kx2; 

    Kfy2 = ky2; 
    Kfx3 = kx3; 

    Kfy3 = ky3; 

    double ky; 
    double kx; 

    kx=((a/2)*mashx); 

    ky=(sqrt(3)/2 * a)*mashy; 
    // Регион X2: 

    double RegX2[5],RegY2[5]; 

    RegX2[0] = x0-(kx*(1-ky2)); 

    RegY2[0] = y0-(ky*(ky2)); 
    RegX2[1] = x0+(kx*(1-ky2)); 

    RegY2[1] = y0-(ky*(ky2)); 

    RegX2[2] = x0+(kx*(1-kx2)); 
    RegY2[2] = y0-(ky*(kx2)); 

    RegX2[3] = x0-(kx*(1-kx2)); 

    RegY2[3] = y0-(ky*(kx2)); 
    RegX2[4] = RegX2[0]; RegY2[4] = RegY2[0]; 

    // Регион X1: 

    double RegX1[5],RegY1[5]; 

    RegX1[0] = x0-(kx*kx1); 
    RegY1[0] = y0-(ky*(1-kx1)); 

    RegX1[1] = x0-(kx*ky1); 
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    RegY1[1] = y0-(ky*(1-ky1)); 

    if(ky1>0.50) RegX1[2] = x0-((kx/0.5)*fabs((0.5-ky1))); 
    else if(ky1<0.51) RegX1[2] = x0+((kx/0.5)*(0.5-ky1)); 

    RegY1[2] = y0; 

    if(kx1>0.5) RegX1[3] = x0-((kx/0.5)*fabs((0.5-kx1))); 
    else if(kx1<0.51) RegX1[3] = x0+((kx/0.5)*(0.5-kx1)); 

    RegY1[3] = y0; 

    RegX1[4] = RegX1[0]; RegY1[4] = RegY1[0]; 

    // Регион X3: 
    double RegX3[5],RegY3[5]; 

    RegX3[0] = x0+(kx*(kx3)); 

    RegY3[0] = y0-(ky*(1-kx3)); 
    RegX3[1] = x0+(kx*(ky3)); 

    RegY3[1] = y0-(ky*(1-ky3)); 

    if(ky3>0.5) RegX3[2] = x0+((kx/0.5)*fabs(0.5-ky3)); 

    else if(ky3<0.51) RegX3[2] = x0-((kx/0.5)*fabs((0.5-
ky3))); 

 

    RegY3[2] = y0; 
    if(kx3>0.5) RegX3[3] = x0+((kx/0.5)*fabs(0.5-kx3)); 

    else if(kx3<0.51) RegX3[3] = x0-((kx/0.5)*fabs((0.5-

kx3))); 
 

    RegY3[3] = y0; 

    RegX3[4] = RegX3[0]; RegY3[4] = RegY3[0]; 

    //---------------------------------------------------------- 
    // Малюємо точки і лінії регіонів X1,X2,X3: 

    //DrawFigure(RegX2,RegY2,4,clBlack,clGreen); 

    //DrawFigure(RegX1,RegY1,4,clBlack,clGreen); 
    //DrawFigure(RegX3,RegY3,4,clBlack,clGreen); 

    

//================================================ 
        double 

peretinX1[10],peretinY1[10],peretinX2[10],peretinY2[10], 

    peretinX3[10],peretinY3[10], 

peretinX4[10],peretinY4[10]; 
    int ff1 = 0, ff2 = 0, ff3 = 0,ff4=0; 

    NullMas(peretinX1,10); 
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    NullMas(peretinY1,10); 

    NullMas(peretinX2,10); 
    NullMas(peretinY2,10); 

    NullMas(peretinX3,10); 

    NullMas(peretinY3,10); 
      NullMas(peretinX4,10); 

    NullMas(peretinY4,10); 

      bool Fl=false; 

CrossTwoPoligon2(5,RegX2,RegY2,5,RegX1,RegY1,ff1,per
etinX1,peretinY1);    

CrossTwoPoligon2(5,RegX3,RegY3,5,RegX2,RegY2,ff2,peretinX2,

peretinY2); 
CrossTwoPoligon2(5,RegX1,RegY1,5,RegX3,RegY3,ff3,per

etinX3,peretinY3); 

     double SumaPeretX[30],SumaPeretY[30]; 

      NullMas(SumaPeretX,30); 
     NullMas(SumaPeretY,30); 

     int countsuma=0; 

        for (int i=0;i<ff3;i++){ 
   bool 

InFigure=thc(RegX2[0],RegY2[0],RegX2[1],RegY2[1],peretinX3[i],

peretinY3[i]); 
   bool flag1=false; 

   bool flag2=false; 

   flag1=peretinX3[i]>=min(RegX2[0], RegX2[1]); 

   flag2=peretinX3[i]<=max(RegX2[0], RegX2[1]); 
   double test=0; 

   test=max(RegX2[0],RegX2[1]); 

   if(InFigure &&flag1  && flag2){ 
  //  Form1->Image1->Canvas->Pen->Color=clBlack; 

   // Form1->Image1->Canvas->Ellipse(peretinX3[i]-

5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5); 
    SumaPeretX[countsuma]=peretinX3[i]; 

    SumaPeretY[countsuma]=peretinY3[i]; 

    countsuma++; 

     peretinX3[i]=0; 
      peretinY3[i]=0; 

    } } 
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    for (int i=0;i<ff3;i++){ 

   bool 
InFigure=thc(RegX2[1],RegY2[1],RegX2[2],RegY2[2],peretinX3[i],

peretinY3[i]); 

   if(InFigure && peretinX3[i]>=min(RegX2[1], RegX2[2]) 
&& peretinX3[i]<=max(RegX2[1], RegX2[2])){ 

   // Form1->Image1->Canvas->Pen->Color=clGreen; 

  //  Form1->Image1->Canvas->Ellipse(peretinX3[i]-

5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5); 
   SumaPeretX[countsuma]=peretinX3[i]; 

    SumaPeretY[countsuma]=peretinY3[i]; 

    countsuma++; 
     peretinX3[i]=0; 

      peretinY3[i]=0;} } 

    for (int i=0;i<ff3;i++){ 

   bool 
InFigure=thc(RegX2[2],RegY2[2],RegX2[3],RegY2[3],peretinX3[i],

peretinY3[i]); 

   if(InFigure && peretinX3[i]>=min(RegX2[2], RegX2[3]) 
&& peretinX3[i]<=max(RegX2[2], RegX2[3])){ 

  //  Form1->Image1->Canvas->Pen->Color=clBlue; 

  //  Form1->Image1->Canvas->Ellipse(peretinX3[i]-
5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5); 

   SumaPeretX[countsuma]=peretinX3[i]; 

    SumaPeretY[countsuma]=peretinY3[i]; 

    countsuma++; 
    peretinX3[i]=0; 

      peretinY3[i]=0; } } 

    for (int i=0;i<ff3;i++){ 
   bool 

InFigure=thc(RegX2[3],RegY2[3],RegX2[4],RegY2[4],peretinX3[i],

peretinY3[i]); 
   if(InFigure && peretinX3[i]>=min(RegX2[3], RegX2[4]) 

&& peretinX3[i]<=max(RegX2[3], RegX2[4])){ 

   // Form1->Image1->Canvas->Pen->Color=clYellow; 

  //  Form1->Image1->Canvas->Ellipse(peretinX3[i]-
5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5); 

   SumaPeretX[countsuma]=peretinX3[i]; 
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    SumaPeretY[countsuma]=peretinY3[i]; 

    countsuma++; 
    peretinX3[i]=0; 

      peretinY3[i]=0; } } 

    //DrawFigure(peretinX3,peretinY3,ff3,clRed,clBlue); 
   double vx[5],vy[5]; bool Fl2[5]; 

   int kk=0; 

  for(int i=0;i<5;i++)    { 

  Fl2[i]=0                 ;} 
      for (int j=0;j<ff3;j++) { 

  for (int i=0;i<4;i++){ 

   
Fl2[i]=PointCrossTwoLine2(RegX2[i],RegY2[i],RegX2[i+1],RegY2

[i+1],peretinX3[j],peretinY3[j],peretinX3[j],peretinY3[j]+10000,vx[

kk],vy[kk]); 

  if (Fl2[i]){ 
  kk++; 

  } 

  }  if(kk==1){ 
     // Form1->Image1->Canvas->Pen->Color=clWhite; 

   SumaPeretX[countsuma]=peretinX3[j]; 

    SumaPeretY[countsuma]=peretinY3[j]; 
    countsuma++; 

   // Form1->Image1->Canvas->Ellipse(peretinX3[j]-

5,peretinY3[j]-5,peretinX3[j]+5,peretinY3[j]+5); 

  } 
  for(int d=0;d<5;d++)    { 

  Fl2[d]=0                 ;} 

  kk=0; 
   } 

     for (int i=0;i<ff1;i++){ 

   bool 
InFigure=thc(RegX3[0],RegY3[0],RegX3[1],RegY3[1],peretinX1[i],

peretinY1[i]); 

   bool flag1=false; 

   bool flag2=false; 
   flag1=peretinX1[i]>=min(RegX3[0], RegX3[1]); 

   flag2=peretinX1[i]<=max(RegX3[0], RegX3[1]); 
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   double test=0; 

   test=max(RegX3[0],RegX3[1]); 
   if(InFigure &&flag1  && flag2){ 

  //  Form1->Image1->Canvas->Pen->Color=clBlack; 

  //  Form1->Image1->Canvas->Ellipse(peretinX1[i]-
5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5); 

    SumaPeretX[countsuma]=peretinX1[i]; 

    SumaPeretY[countsuma]=peretinY1[i]; 

    countsuma++; 
     peretinX1[i]=0; 

      peretinY1[i]=0; 

    } } 
    for (int i=0;i<ff1;i++){ 

   bool 

InFigure=thc(RegX3[1],RegY3[1],RegX3[2],RegY3[2],peretinX1[i],

peretinY1[i]); 
   if(InFigure && peretinX1[i]>=min(RegX3[1], RegX3[2]) 

&& peretinX1[i]<=max(RegX3[1], RegX3[2])){ 

   // Form1->Image1->Canvas->Pen->Color=clGreen; 
   // Form1->Image1->Canvas->Ellipse(peretinX1[i]-

5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5); 

   SumaPeretX[countsuma]=peretinX1[i]; 
    SumaPeretY[countsuma]=peretinY1[i]; 

    countsuma++; 

     peretinX1[i]=0; 

      peretinY1[i]=0;} } 
    for (int i=0;i<ff1;i++){ 

   bool 

InFigure=thc(RegX3[2],RegY3[2],RegX3[3],RegY3[3],peretinX1[i],
peretinY1[i]); 

   if(InFigure && peretinX1[i]>=min(RegX3[2], RegX3[3]) 

&& peretinX1[i]<=max(RegX3[2], RegX3[3])){ 
  //  Form1->Image1->Canvas->Pen->Color=clBlue; 

  //  Form1->Image1->Canvas->Ellipse(peretinX1[i]-

5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5); 

   SumaPeretX[countsuma]=peretinX1[i]; 
    SumaPeretY[countsuma]=peretinY1[i]; 

    countsuma++; 
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    peretinX1[i]=0; 

      peretinY1[i]=0; } } 
    for (int i=0;i<ff1;i++){ 

   bool 

InFigure=thc(RegX3[3],RegY3[3],RegX3[4],RegY3[4],peretinX1[i],
peretinY1[i]); 

   if(InFigure && peretinX1[i]>=min(RegX3[3], RegX3[4]) 

&& peretinX1[i]<=max(RegX3[3], RegX3[4])){ 

  //  Form1->Image1->Canvas->Pen->Color=clYellow; 
  //  Form1->Image1->Canvas->Ellipse(peretinX1[i]-

5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5); 

    SumaPeretX[countsuma]=peretinX1[i]; 
    SumaPeretY[countsuma]=peretinY1[i]; 

    countsuma++; 

    peretinX1[i]=0; 

      peretinY1[i]=0; } } 
    //DrawFigure(peretinX3,peretinY3,ff3,clRed,clBlue); 

 /*  double vx[5],vy[5]; bool Fl2[5]; 

   int kk=0;       */ 
 

  for(int i=0;i<5;i++)    { 

  Fl2[i]=0                 ;} 
      for (int j=0;j<ff1;j++) { 

  for (int i=0;i<4;i++){ 

Fl2[i]=PointCrossTwoLine2(RegX3[i],RegY3[i],RegX3[i+1

],RegY3[i+1],peretinX1[j],peretinY1[j],peretinX1[j]-
10000,peretinY1[j],vx[kk],vy[kk]); 

  if (Fl2[i]){ 

 
  kk++; 

  } 

  }  if(kk==1){ 
   //   Form1->Image1->Canvas->Pen->Color=clWhite; 

      SumaPeretX[countsuma]=peretinX1[j]; 

    SumaPeretY[countsuma]=peretinY1[j]; 

    countsuma++; 
  //  Form1->Image1->Canvas->Ellipse(peretinX1[j]-

5,peretinY1[j]-5,peretinX1[j]+5,peretinY1[j]+5); 
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  } 

  for(int d=0;d<5;d++)    { 
  Fl2[d]=0                 ;} 

  kk=0; 

   } 
   //DrawFigure(peretinX1,peretinY1,ff1,clWhite,clRed); 

   // 

CrossTwoPoligon2(5,RegX3,RegY3,ff2,peretinX2,peretinY2,ff4,per

etinX4,peretinY4); 
    // DrawFigure(peretinX4,peretinY4,ff4,clWhite,clRed); 

  //  PointsPeretin(RegX1,RegY1,peretinX2, peretinY2, ff2); 

 
 // DrawFigure(peretinX2,peretinY2,ff2,clRed,clRed); 

     for (int i=0;i<ff2;i++){ 

   bool 

InFigure=thc(RegX1[0],RegY1[0],RegX1[1],RegY1[1],peretinX2[i],
peretinY2[i]); 

   if(InFigure && peretinX2[i]>=min(RegX1[0], RegX1[1]) 

&& peretinX2[i]<=max(RegX1[0], RegX1[1])){ 
   // Form1->Image1->Canvas->Pen->Color=clBlack; 

   // Form1->Image1->Canvas->Ellipse(peretinX2[i]-

5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5); 
     SumaPeretX[countsuma]=peretinX2[i]; 

    SumaPeretY[countsuma]=peretinY2[i]; 

    countsuma++; 

     peretinX2[i]=0; 
      peretinY2[i]=0; 

    } } 

    for (int i=0;i<ff2;i++){ 
   bool 

InFigure=thc(RegX1[1],RegY1[1],RegX1[2],RegY1[2],peretinX2[i],

peretinY2[i]); 
   if(InFigure && peretinX2[i]>=min(RegX1[1], RegX1[2]) 

&& peretinX2[i]<=max(RegX1[1], RegX1[2])){ 

  //  Form1->Image1->Canvas->Pen->Color=clGreen; 

  //  Form1->Image1->Canvas->Ellipse(peretinX2[i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5); 

    SumaPeretX[countsuma]=peretinX2[i]; 
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    SumaPeretY[countsuma]=peretinY2[i]; 

    countsuma++; 
     peretinX2[i]=0; 

      peretinY2[i]=0;} } 

    for (int i=0;i<ff2;i++){ 
   bool 

InFigure=thc(RegX1[2],RegY1[2],RegX1[3],RegY1[3],peretinX2[i],

peretinY2[i]); 

   if(InFigure && peretinX2[i]>=min(RegX1[2], RegX1[3]) 
&& peretinX2[i]<=max(RegX1[2], RegX1[3])){ 

  //  Form1->Image1->Canvas->Pen->Color=clBlue; 

  //  Form1->Image1->Canvas->Ellipse(peretinX2[i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5); 

    SumaPeretX[countsuma]=peretinX2[i]; 

    SumaPeretY[countsuma]=peretinY2[i]; 

    countsuma++; 
    peretinX2[i]=0; 

      peretinY2[i]=0; } } 

    for (int i=0;i<ff2;i++){ 
   bool 

InFigure=thc(RegX1[3],RegY1[3],RegX1[4],RegY1[4],peretinX2[i],

peretinY2[i]); 
   if(InFigure && peretinX2[i]>=min(RegX1[3], RegX1[4]) 

&& peretinX2[i]<=max(RegX1[3], RegX1[4])){ 

   // Form1->Image1->Canvas->Pen->Color=clYellow; 

  //  Form1->Image1->Canvas->Ellipse(peretinX2[i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5); 

   SumaPeretX[countsuma]=peretinX2[i]; 

    SumaPeretY[countsuma]=peretinY2[i]; 
    countsuma++; 

    peretinX2[i]=0; 

      peretinY2[i]=0; } } 
    //DrawFigure(peretinX3,peretinY3,ff3,clRed,clBlue); 

  // double vx[5],vy[5]; bool Fl2[5]; 

 //  int kk=0; 

 
  for(int i=0;i<5;i++)    { 

  Fl2[i]=0                 ;} 
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      for (int j=0;j<ff2;j++) { 

  for (int i=0;i<4;i++){ 
l2[i]=PointCrossTwoLine2(RegX1[i],RegY1[i],RegX1[i+1],

RegY1[i+1],peretinX2[j],peretinY2[j],peretinX2[j]+10000,peretinY2

[j],vx[kk],vy[kk]); 
  if (Fl2[i]){ 

 

  kk++; 

  } 
  }  if(kk==1){ 

   //   Form1->Image1->Canvas->Pen->Color=clWhite; 

       SumaPeretX[countsuma]=peretinX2[j]; 
    SumaPeretY[countsuma]=peretinY2[j]; 

    countsuma++; 

   // Form1->Image1->Canvas->Ellipse(peretinX2[j]-

5,peretinY2[j]-5,peretinX2[j]+5,peretinY2[j]+5); 
  } 

  for(int d=0;d<5;d++)    { 

  Fl2[d]=0                 ;} 
  kk=0; 

   } 

    /*  for (int j=0;j<ff1;j++) { 
  for (int i=0;i<4;i++){ 

Fl2[i]=PointCrossTwoLine2(RegX3[i],RegY3[i],RegX3[i+1

],RegY3[i+1],peretinX1[j],peretinY1[j],peretinX1[j]+10000,peretinY

1[j],vx[kk],vy[kk]); 
  if (Fl2[i]){ 

  kk++; 

  } 
  } 

  if(kk<1){ 

    peretinX1[j]=0; 
    peretinY1[j]=0; 

  } 

  kk=0; 

  }   */ 
CrossTwoPoligon2(5,RegX3,RegY3,ff2,peretinX2,peretinY

2,ff4,peretinX4,peretinY4); 
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//========================================== 

    /* PointsPeretin(RegX3,RegY3,peretinX1, peretinY1, 
ff1); 

     PointsPeretin(RegX1,RegY1,peretinX2, peretinY2, ff2); 

     PointsPeretin(RegX2,RegY2,peretinX3, peretinY3, ff3); 
    */ 

     double SumaPeretX2[30],SumaPeretY2[30]; 

       NullMas(SumaPeretX2,30);  double 

SumaPeretX3[30],SumaPeretY3[30];    NullMas(SumaPeretX3,30); 
     NullMas(SumaPeretY2,30); 

     NullMas(SumaPeretY3,30); 

   /*  double SumaPeretX[30],SumaPeretY[30]; 
      NullMas(SumaPeretX,30); 

     NullMas(SumaPeretY,30); 

     double SumaPeretX2[30],SumaPeretY2[30]; 

     double SumaPeretX3[30],SumaPeretY3[30]; 
     int d=0; 

     NullMas(SumaPeretX,30); 

     NullMas(SumaPeretY,30); 
      NullMas(SumaPeretX2,30); 

     NullMas(SumaPeretY2,30); 

       NullMas(SumaPeretX3,30); 
     NullMas(SumaPeretY3,30); 

     PointsUnite(peretinX1,peretinY1,peretinX2,peretinY2, 

     peretinX3,peretinY3,SumaPeretX,SumaPeretY,d);  */ 

      NullMas(FX,10); 
     NullMas(FY,10); 

           FN=0; 

          DelRepeatPoints(SumaPeretX,SumaPeretY,10); 
           Path(SumaPeretX,SumaPeretY,countsuma); 

PointsUnite2(SumaPeretX,SumaPeretY,SumaPeretX2,Suma

PeretY2,FN); 
      DelRepeatPoints(SumaPeretX2,SumaPeretY2,10); 

     int FN2=0; 

     for(int i=0; i<FN; i++){ 

     if (SumaPeretX2[i]!=0 && SumaPeretY2!=0) 
     { 

     SumaPeretX3[FN2]=SumaPeretX2[i]; 
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     SumaPeretY3[FN2]=SumaPeretY2[i]; 

     FN2++; 
     }  } 

     FN=FN2; 

     Path(SumaPeretX3,SumaPeretY3,FN); 
      // 

PointsUnite2(SumaPeretX2,SumaPeretY2,SumaPeretX3,SumaPeret

Y3,FN2); 

DrawFigure(SumaPeretX3,SumaPeretY3,FN2,clBlack,clBla
ck); 

   if (FN2==3){ 

   double q,qq,qqq; 
   int e,ee,eee; 

   bool r=false,rr=false,rrr=false; 

   q=(SumaPeretX3[0]); 

   qq=(SumaPeretX3[1]); 
   qqq=(SumaPeretX3[2]); 

   e=(SumaPeretY3[0]*100000); 

   ee=(SumaPeretY3[1]*100000); 
   eee=(SumaPeretY3[2]*100000); 

       if (r && rr && rrr) 

   { 
   FN2=1; 

   } 

   } 

    if (FN2==0) 
    { 

    Edit13->Color=clRed; 

    Button4->Enabled=false;    Error2=false; 
    Error1=true; 

    Button11->Visible=true; 

    } 
    else if (FN2==1 || FN2==2) 

    { 

    Edit13->Color=clRed; 

    Button4->Enabled=false; 
    Error1=false; 

    Error2=true;   Button11->Visible=true; 
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    } else 

    { 
     Edit13->Color=clGreen; 

    Button4->Enabled=true; 

    Error1=false; 
    Error2=false;  Button11->Visible=false; 

    } 

    // FN = countsuma; 

     for(int i = 0; i < FN2; i++) 
     { 

         FX[i] = SumaPeretX3[i]; 

         FY[i] = SumaPeretY3[i]; 
     }   } 

   /* for (int i=0;i<d;i++){ 

    if (1390!=floor(SumaPeretY[i])) 

    { SumaPeretY[i]=0; 
    SumaPeretX[i]=0;} 

    }   */ 

   /* for (int i=0;i<5;i++){ 
             bool 

InFigure=thc(RegX3[3],RegY3[3],RegX3[4],RegY3[4],SumaPeretX

[i],SumaPeretY[i]); 
         /*   if(InFigure)  { 

             if (((RegX3[0]<= SumaPeretX[i])&& (RegX3[1]<= 

SumaPeretX[i]))|| 

             ((RegX3[0]>= SumaPeretX[i])&& (RegX3[1]>= 
SumaPeretX[i]))) { 

                SumaPeretX[i]=0; 

             } 
            } */ 

         /*   if (!InFigure) { SumaPeretX[i]=0; 

            SumaPeretY[i]=0; 
            } }  */ 

     /*         bool Fl,FL; 

            double Xv,Yv; 

            int counter=0,num=0,dd=0; 
            double MaxX3,MinX3,MaxY3,MinY3; 

            MaxX3=MaxMin(4,RegX3,1); 
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            MaxY3=MaxMin(4,RegY3,1); 

            MinX3=MaxMin(4,RegX3,-1); 
            MinY3=MaxMin(4,RegY3,-1); 

Fl=PointCrossTwoLine2(RegX3[3],RegY3[3],RegX3[4],Re

gY3[4],SumaPeretX[2],SumaPeretY[2],SumaPeretX[2]+1000,Suma
PeretY[2],Xv,Yv); 

      for (int i=0;i<d;i++) { 

     FL=(MaxX3<SumaPeretX[i] || MinX3>SumaPeretX[i]) || 

(MaxY3<SumaPeretY[i] || MinY3>SumaPeretY[i]); 
          if (FL) { SumaPeretX[i]=0; 

            SumaPeretY[i]=0; 

            counter++; 
            }  } 

            num=d-counter; 

            counter=0; 

              for (int i=0;i<d;i++) { 
     FL=RegX2[3]>SumaPeretX[i] || 

RegX2[2]<SumaPeretX[i] || RegY2[0]>SumaPeretY[i] || 

RegY2[3]<SumaPeretY[i]; 
          if (FL) { SumaPeretX[i]=0; 

            SumaPeretY[i]=0; 

            counter++; 
            }  } 

            counter=0; 

            num=d-counter; 

             for (int i=0;i<d;i++) { 
     FL=RegX1[1]>SumaPeretX[i] || 

RegX1[3]<SumaPeretX[i] || RegY1[0]>SumaPeretY[i] || 

RegY1[3]<SumaPeretY[i]; 
          if (FL) { SumaPeretX[i]=0; 

            SumaPeretY[i]=0; 

            counter++; 
            }  } 

            num=d-counter; 

            for (int i=0;i<d;i++){ 

            if (SumaPeretX[i]!=0 && SumaPeretY[i]!=0){ 
               SumaPeretX2[dd]=SumaPeretX[i]; 

               SumaPeretY2[dd]=SumaPeretY[i]; 
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               dd++; 

            } 
            } 

            int mm=0; 

           for (int i=0;i<4;i++) { 
             for (int j=0;j<dd;j++) 

       { 

Fl=PointCrossTwoLine2(RegX3[i],RegY3[i],RegX3[i+1],Re

gY3[i+1],SumaPeretX2[j],SumaPeretY2[j],SumaPeretX2[j]+1000,S
umaPeretY2[j],Xv,Yv); 

         bool 

InFigure=thc(RegX3[i],RegY3[i],RegX3[i+1],RegY3[i+1],SumaPer
etX2[j],SumaPeretY2[j]); 

         bool 

InFigure2=thc(RegX1[i],RegY1[i],RegX1[i+1],RegY1[i+1],SumaPe

retX2[j],SumaPeretY2[j]); 
        if(InFigure==true || InFigure2==true) 

        { 

            SumaPeretX3[mm]=SumaPeretX2[j]; 
          SumaPeretY3[mm]=SumaPeretY2[j]; 

           mm++; 

        } 
       /*   if (Fl && !InFigure) 

          { 

          SumaPeretX2[j]=0; 

          SumaPeretY2[j]=0; 
            //mm++; 

          }    */ 

          //} 
 

        //   } 

        //    Path(SumaPeretX2,SumaPeretY2,dd); 
    // if (RegX3[1]<SumaPeretX[14] &&  

//------------------------------------------------------------------------ 

void DrawRegions(double kx1, double ky1,double 

kx2,double ky2, double kx3, double ky3) 
{ 

    double eps = 100; // Кількість частин 
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    double kxx1,kyy1,kxx3,kyy3; 

  /*  kxx1 = 1 - kx1; 
    kyy1 = 1 - ky1; 

    kxx3 = 1 - kx3; 

    kyy3 = 1 - ky3;  */ 
    //----------------- 

    kx1=(kx1*eps); 

    ky1=(ky1*eps); 

    kx2=(kx2*eps)+1; 
    ky2=(ky2*eps)+1; 

    kx3=(kx3*eps); 

    ky3=(ky3*eps); 
    double ky; 

    double kx; 

    kx=((a/2)*mashx); 

    ky=(sqrt(3)/2 * a)*mashy; 
    //----------------------- 

    // Для X1,X2,X3: 

    //-------------------------------------------------------- 
    // X2: 

    Form1->Image1->Canvas->Pen->Color = clRed; 

    for(double i=kx2;i<=ky2;i++) { 
       Form1->Image1->Canvas->MoveTo(x0-

(kx/eps)*(eps+1-i),y0-((ky/eps)*(i-1))); 

       Form1->Image1->Canvas-

>LineTo(x0+(kx/eps)*(eps+1-i),y0-((ky/eps)*(i-1))); 
    } 

    //X1: 

    Form1->Image1->Canvas->Pen->Color = clGray; 
    for(double i=kx1;i<=(ky1);i++) { 

     if(kx1<(eps/2+2)) 

     { 
      Form1->Image1->Canvas->MoveTo(x0-(kx/eps)*(i),y0-

((ky/eps)*(eps-i))); 

      Form1->Image1->Canvas-

>LineTo(x0+((kx/(eps/2))*((eps/2+1)-i-1)),y0); 
     } 

     if(kx1>(eps/2+1)) 
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     { 

      Form1->Image1->Canvas->MoveTo(x0-(kx/eps)*(i),y0-
((ky/eps)*(eps-i))); 

      Form1->Image1->Canvas->LineTo(x0-

((kx/(eps/2))*fabs(((eps/2+1)-i-1))),y0); 
     } 

    } 

    //X3: 

    Form1->Image1->Canvas->Pen->Color = clGreen; 
    for(double i=kx3;i<=(ky3);i++) { 

     if(kx3<(eps/2+2)) 

     { 
      Form1->Image1->Canvas->MoveTo(x0-(kx/eps)*(-i),y0-

((ky/eps)*(eps-i))); 

      Form1->Image1->Canvas->LineTo(x0-

((kx/(eps/2))*((eps/2+1)-i-1)),y0); 
     } 

     if(kx3>(eps/2+1)) 

     { 
     Form1->Image1->Canvas->MoveTo(x0-(kx/eps)*(-i),y0-

((ky/eps)*(eps-i))); 

     Form1->Image1->Canvas-
>LineTo(x0+((kx/(eps/2))*fabs(((eps/2+1)-i-1))),y0); 

     } 

    } 

   //----------------------------------------------------------- 
} 

bool PointCrossTwoLine(float Xa,float Ya,float Xb,float 

Yb,float Xc,float Yc,float Xd,float Yd,float &X0,float &Y0) 
{ 

        float 

A1,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0; 
        int i; 

        bool B; 

        B=False; 

        A1=Yb-Ya; 
        B1=Xa-Xb; 

        C1=Ya*Xb-Xa*Yb; 
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        A2=Yd-Yc; 

        B2=Xc-Xd; 
        C2=Yc*Xd-Xc*Yd; 

        Ra=A2*Xa+B2*Ya+C2; 

        Rb=A2*Xb+B2*Yb+C2; 
        Rc=A1*Xc+B1*Yc+C1; 

        Rd=A1*Xd+B1*Yd+C1; 

        Rab=Ra*Rb; 

        Rcd=Rc*Rd; 
        if (Ra==0 && Rcd<0) 

        {X0=Xa;Y0=Ya;B=true;} 

           else if (Rb==0 && Rcd<0) 
           {X0=Xb;Y0=Yb;B=true;} 

              else if (Rc==0 && Rab<0) 

              {X0=Xc;Y0=Yc;B=true;} 

                 else if (Rd==0 && Rab<0) 
                 {X0=Xd;Y0=Yd;B=true;} 

                    else if (Ra==0 && Rc==0 && Rb!=0 && 

Rd!=0) 
                    {X0=Xc;Y0=Yc;B=true;} 

                       else if (Rb==0 && Rc==0 && Ra!=0 && 

Rd!=0) 
                       {X0=Xc;Y0=Yc;B=true;} 

                          else if (Ra==0 && Rd==0 && Rb!=0 && 

Rc!=0) 

                          {X0=Xd;Y0=Yd;B=true;} 
                             else if (Rb==0 && Rd==0 && Ra!=0 && 

Rc!=0) 

                             {X0=Xd;Y0=Yd;B=true;} 
         else 

         { 

         B=((Rcd<0)&&(Rab<0)); 
         if (B) 

         { 

         D0=A1*B2-A2*B1; 

         D1=C2*B1-C1*B2; 
         D2=C1*A2-C2*A1; 

         X0=D1/D0; 
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         Y0=D2/D0; 

         } 
         } 

         return B; 

} 
bool PointCrossTwoLine2(double Xa,double Ya,double 

Xb,double Yb,double Xc,double Yc,double Xd,double Yd,double 

&X0,double &Y0) 

{ 
        double 

A1,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0; 

        int i; 
        bool B; 

        B=False; 

        A1=Yb-Ya; 

        B1=Xa-Xb; 
        C1=Ya*Xb-Xa*Yb; 

        A2=Yd-Yc; 

        B2=Xc-Xd; 
        C2=Yc*Xd-Xc*Yd; 

        Ra=A2*Xa+B2*Ya+C2; 

        Rb=A2*Xb+B2*Yb+C2; 
        Rc=A1*Xc+B1*Yc+C1; 

        Rd=A1*Xd+B1*Yd+C1; 

        Ra=floor(Ra); 

        Rb=floor(Rb); 
        Rc=floor(Rc); 

        Rd=floor(Rd); 

        Rab=Ra*Rb; 
        Rcd=Rc*Rd; 

        Rab=floor(Rab); 

        Rcd=floor(Rcd); 
        if(Ra == -1) Ra = 0; 

        if(Rb == -1) Rb = 0; 

        if(Rc == -1) Rc = 0; 

        if(Rd == -1) Rd = 0; 
        if(Rab == -1) Rab = 0; 

        if(Rcd == -1) Rcd = 0; 
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        if (Ra==0 && Rcd<0) 

        {X0=Xa;Y0=Ya;B=true;} 
           else if (Rb==0 && Rcd<0) 

           {X0=Xb;Y0=Yb;B=true;} 

              else if (Rc==0 && Rab<0) 
              {X0=Xc;Y0=Yc;B=true;} 

                 else if (Rd==0 && Rab<0) 

                 {X0=Xd;Y0=Yd;B=true;} 

                    else if (Ra==0 && Rc==0 && Rb!=0 && 
Rd!=0) 

                    {X0=Xc;Y0=Yc;B=true;} 

                       else if (Rb==0 && Rc==0 && Ra!=0 && 
Rd!=0) 

                       {X0=Xc;Y0=Yc;B=true;} 

                          else if (Ra==0 && Rd==0 && Rb!=0 && 

Rc!=0) 
                          {X0=Xd;Y0=Yd;B=true;} 

                             else if (Rb==0 && Rd==0 && Ra!=0 && 

Rc!=0) 
                             {X0=Xd;Y0=Yd;B=true;} 

         else 

         { 
         B=((Rcd<0)&&(Rab<0)); 

         if (B) 

         { 

         D0=A1*B2-A2*B1; 
         D1=C2*B1-C1*B2; 

         D2=C1*A2-C2*A1; 

         X0=D1/D0; 
         Y0=D2/D0; 

         } 

         } 
         return B; 

} 

bool cross(double Xa,double Ya,double Xb,double 

Yb,double Xc,double Yc,double Xd,double Yd,double &X0,double 
&Y0) 

{ 
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        double 

A1,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0; 
        int i; 

        bool B; 

        B=False; 
        A1=Ya-Yb; 

        B1=Xb-Xa; 

        C1=Xa*Yb-Xb*Ya; 

        A2=Yc-Yd; 
        B2=Xd-Xc; 

        C2=Xc*Yd-Xd*Yc; 

        Ra=A2*Xa+B2*Ya+C2; 
        Rb=A2*Xb+B2*Yb+C2; 

        Rc=A1*Xc+B1*Yc+C1; 

        Rd=A1*Xd+B1*Yd+C1; 

 
 

         D0=A1*B2-A2*B1; 

         D1=C2*B1-C1*B2; 
         D2=C1*A2-C2*A1; 

         X0=D1/D0; 

         Y0=D2/D0; 
         return B; 

} 

bool CrossTwoPoligon (int KilksPointPol1,float 

XPol1[],float YPol1[], 
int KilksPointPol2,float XPol2[],float YPol2[],int &Vt,float 

Xv0[],float Yv0[]) 

{ 
 bool Fl=false; 

 float Xv,Yv; 

 for (int k=0;k<KilksPointPol1-1;k++) 
       for (int m=0;m<KilksPointPol2-1;m++) 

       { 

Fl=PointCrossTwoLine(XPol1[m],YPol1[m],XPol1[m+1],Y

Pol1[m+1],XPol2[k],YPol2[k],XPol2[k+1],YPol2[k+1],Xv,Yv); 
             if (Fl) 

        { if (Vt==0) 
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        {  Xv0[Vt] = Xv; 

           Yv0[Vt] = Yv; 
           Vt++; 

        } 

         if(Xv!=Xv0[Vt-1]||Yv!=Yv0[Vt-1]) 
          { Xv0[Vt] = Xv; 

           Yv0[Vt] = Yv; 

           Vt++; 

          } 
        } 

       }if (Vt>=5) 

       Fl=true; 
       return Fl; 

} 

bool CrossTwoPoligon2 (int KilksPointPol1,double 

XPol1[],double YPol1[], 
int KilksPointPol2,double XPol2[],double YPol2[],int 

&Vt,double Xv0[],double Yv0[]) 

{ 
 bool Fl=false; 

 double Xv,Yv; 

 for (int k=0;k<KilksPointPol1-1;k++) 
       for (int m=0;m<KilksPointPol2-1;m++) 

       { 

Fl=PointCrossTwoLine2(XPol1[m],YPol1[m],XPol1[m+1],

YPol1[m+1],XPol2[k],YPol2[k],XPol2[k+1],YPol2[k+1],Xv,Yv); 
             if (Fl) 

        { if (Vt==0) 

        {  Xv0[Vt] = Xv; 
           Yv0[Vt] = Yv; 

           Vt++; 

        } 
         if(Xv!=Xv0[Vt-1]||Yv!=Yv0[Vt-1]) 

          { Xv0[Vt] = Xv; 

           Yv0[Vt] = Yv; 

           Vt++; 
          } 

        } 
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       }if (Vt>=5) 

       Fl=true; 
       return Fl; 

} 

void NullMas(double mas[], int n) 
{ 

   for(int i = 0; i < n; i++) 

   { 

      mas[i] = 0; 
   } 

} 

void DelRepeatPoints(double masX[],double masY[], int n) 
{ 

   for(int i = 0; i < n; i++) 

   { 

      for(int j = i+1; j < n; j++) 
      { 

          if((masX[i] == masX[j]) && (masY[i] == masY[j])) 

          { 
             masX[j] = 0; 

             masY[j] = 0; 

          } 
      } 

   } 

   for(int i = 0; i < n-1; i++) 

   { 
       if(masX[i] == 0 && masY[i] == 0) 

       { 

          if(masX[i+1] != 0 && masY[i+1] != 0) 
          { 

            masX[i] = masX[i+1]; 

            masY[i] = masY[i+1]; 
            masX[i+1] = 0; 

            masY[i+1] = 0; 

          } 

       } 
   } 

} 
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void DrawFigure(double pointX[],double pointY[],int n, 

TColor colline,TColor colpoint) 
{ 

    Form1->Image1->Canvas-

>MoveTo(pointX[0],pointY[0]); 
    for(int i = 0; i < n; i++) 

    { 

       Form1->Image1->Canvas->Pen->Color = colpoint; 

       Form1->Image1->Canvas->Ellipse(pointX[i]-
5,pointY[i]-5,pointX[i]+5,pointY[i]+5); 

       //Form1->Image1->Canvas->Ellipse(pointX[i]-

(5+i)*2,pointY[i]-(5+i)*2,pointX[i]+(5+i)*2,pointY[i]+(5+i)*2); 
       Form1->Image1->Canvas->Pen->Color = colline; 

       Form1->Image1->Canvas-

>LineTo(pointX[i],pointY[i]); 

    } 
    Form1->Image1->Canvas->LineTo(pointX[0],pointY[0]); 

} 

void Path(double X[], double Y[], int n) 
{ 

    double Ycdet2; 

    double Otbor1[10],Otbor2[10],Otbor1Y[10],Otbor2Y[10]; 
    NullMas(Otbor1,10); 

    NullMas(Otbor2,10); 

    NullMas(Otbor1Y,10); 

    NullMas(Otbor2Y,10); 
    ParamDet3(n,X,Y,Ycdet2); 

    int g1=0,g2=0; 

    for(int i=0;i<n;i++) 
    { 

      if (Ycdet2>=Y[i]) 

      { 
        Otbor1[g1]=X[i]; 

        Otbor1Y[g1]=Y[i]; 

        g1++; 

      } 
      else 

      { 
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        Otbor2[g2]=X[i]; 

        Otbor2Y[g2]=Y[i]; 
        g2++; 

      } 

    } 
    double tempG=0; 

    double tempGG=0; 

    int fl=0; 

    while (true) 
    { 

       fl = 1; 

       for(int i = 0; i < g1 - 1; i++) 
       { 

           if ((Otbor1[i] < Otbor1[i+1]) && Otbor1[i]!=0) 

           { 

                        double temp = Otbor1[i]; 
                        Otbor1[i] = Otbor1[i + 1]; 

                        Otbor1[i + 1] = temp; 

                        double temp2 = Otbor1Y[i]; 
                        Otbor1Y[i] = Otbor1Y[i + 1]; 

                        Otbor1Y[i + 1] = temp2; 

                        fl = 0; 
            } 

        } 

        if (fl == 1) break; 

    } 
    fl=0; 

    while (true) 

    { 
        fl = 1; 

        for(int i = 0; i < g2 - 1; i++) 

        { 
            if(Otbor2[i] < Otbor2[i+1] && Otbor2[i]!=0) 

            { 

               double temp = Otbor2[i]; 

               Otbor2[i] = Otbor2[i + 1]; 
               Otbor2[i + 1] = temp; 

               double temp2 = Otbor2Y[i]; 
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               Otbor2Y[i] = Otbor2Y[i + 1]; 

               Otbor2Y[i + 1] = temp2; 
               fl = 0; 

            } 

        } 
        if (fl == 1) break; 

    } 

    for(int i=0;i<g1;i++) 

    { 
         X[i]=Otbor1[i]; 

         Y[i]=Otbor1Y[i]; 

    } 
    for(int i=g1,j=g2-1;i<g1+g2;i++,j--) 

    { 

         X[i]=Otbor2[j]; 

         Y[i]=Otbor2Y[j]; 
    } 

} 

void PointsUnite(double peretinX1[],double 
peretinY1[],double peretinX2[],double peretinY2[], 

double peretinX3[],double peretinY3[],double 

SumaPeretX[],double SumaPeretY[], int &d) 
{ 

   for(int i=0;i<10;i++) 

   { 

     if(peretinX3[i]!=0 && peretinY3[i]!=0) 
     { 

      SumaPeretX[d]=peretinX3[i]; 

      SumaPeretY[d]=peretinY3[i]; 
      d++; 

     } 

   } 
   for(int i=0;i<10;i++) 

   { 

     if(peretinX2[i]!=0 && peretinY2[i]!=0) 

     { 
      SumaPeretX[d]=peretinX2[i]; 

      SumaPeretY[d]=peretinY2[i]; 
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      d++; 

     } 
   } 

   for(int i=0;i<10;i++) 

   { 
     if(peretinX1[i]!=0 && peretinY1[i]!=0) 

     { 

      SumaPeretX[d]=peretinX1[i]; 

      SumaPeretY[d]=peretinY1[i]; 
      d++; 

     } 

   } 
} 

void PointsUnite2(double peretinX3[],double 

peretinY3[],double SumaPeretX[],double SumaPeretY[], int &d) 

{ 
   for(int i=0;i<30;i++) 

   { 

     if(peretinX3[i]!=0 && peretinY3[i]!=0) 
     { 

      SumaPeretX[d]=peretinX3[i]; 

      SumaPeretY[d]=peretinY3[i]; 
      d++; 

     } 

   } 

} 
void PointsPeretin(double RegX1[],double RegY1[], double 

peretinX2[], double peretinY2[], int ff2) 

{ 
    bool fak=false; 

    int kl=0; 

    double ho2=0,hoho2=0; 
    for(int j=0;j<ff2;j++){ 

    for(int i=0;i<4;i++) 

    {  

fak=PointCrossTwoLine2(RegX1[i],RegY1[i],RegX1[i+1],RegY1[i
+1],peretinX2[j],peretinY2[j],peretinX2[j],peretinY2[j]+5000,ho2,ho

ho2); 
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       if (fak==true) 

       {kl++;  } 
     if (kl>1){ 

     fak =false; 

     kl=0; 
     peretinX2[j]=0; 

      peretinY2[j]=0; 

     break; 

     } 
    } 

    if(kl==0) 

    { 
      peretinX2[j]=0; 

      peretinY2[j]=0; 

    } 

    if(kl==1) 
     { 

     kl=0; 

     } 
    } kl=0; 

} 

void __fastcall TForm1::Button2Click(TObject *Sender) 
{ 

  /* Form1->PageControl1->ActivePage=TabSheet2; 

   ClearGraph(Image2); 

   //DrawGraph(Image2); 
       Form1->ScrollBox2->Width/2; 

       Form1->ScrollBox2->Height/2; 

   double XcE,YcE,XcIm3,YcIm3; 
   XcE=Image2->Width/2; 

   YcE=Image2->Height/2; 

   KilksPointDet = 0; 
   for(int i = 0; i < 10; i++) 

   { 

     selectedpoints[i] = false; 

   } 
   ParamDet(); 

   ParamModeli(); 
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   BuildIm2(XcE,YcE);  */ 

   Form2->Close(); 
} 

//------------------------------------------------------------------------

void ParamDet() 
{ 

     MaxX=MaxMin(FN,FX,1); 

     MaxY=MaxMin(FN,FY,1); 

     MinX=MaxMin(FN,FX,-1); 
     MinY=MaxMin(FN,FY,-1); 

     DlDet=MaxX-MinX; 

     ShDet=MaxY-MinY; 
     XcDet=(MaxX+MinX)/2; 

     YcDet=(MaxY+MinY)/2; 

} 

void ParamDet2(int KilkT, double X2[], double Y2[], double 
&DlDet2, double &ShDet2) 

{ 

     double MaxX2=MaxMin(KilkT,X2,1); 
     double MaxY2=MaxMin(KilkT,Y2,1); 

     double MinX2=MaxMin(KilkT,X2,-1); 

     double MinY2=MaxMin(KilkT,Y2,-1); 
     DlDet2=MaxX2-MinX2; 

     ShDet2=MaxY2-MinY2; 

} 

void ParamDet3(int KilkT, double X2[], double Y2[],double 
&YcDet) 

{ 

     double MaxY2=MaxMin(KilkT,Y2,1); 
     double MinY2=MaxMin(KilkT,Y2,-1); 

     YcDet=(MaxY2+MinY2)/2; 

} 
void ParamDet4(int KilkT, double X2[], double Y2[],double 

&YcDet,double &XcDet,double &DL,double &Sh) 

{ 

     double MaxY2=MaxMin(KilkT,Y2,1); 
     double MinY2=MaxMin(KilkT,Y2,-1); 

     double MaxX2=MaxMin(KilkT,X2,1); 
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     double MinX2=MaxMin(KilkT,X2,-1); 

     YcDet=(MaxY2+MinY2)/2; 
     XcDet=(MaxX2+MinX2)/2; 

     DL=MaxX2-MinX2; 

     Sh=MaxY2-MinY2; 
} 

double MaxMin(int n,double Z[],int p) 

{ 

     int i; 
     double q; 

     q=Z[0]; 

     for (i=1;i<n;i++) 
         if (p*q<p*Z[i]) q=Z[i]; 

        return q; 

} 

void ParamModeli() 
{ 

   double Xmax,Ymax,Xmin,Ymin; 

   Xmax=MaxX; Xmin=MinX; 
   Ymax=MaxY; Ymin=MinY; 

   DlMod=Xmax-Xmin; 

   ShMod=Ymax-Ymin; 
   XcMod=(Xmax+Xmin)/2; 

   YcMod=(Ymax+Ymin)/2; 

} 

void BuildIm2(double XcE,double YcE) 
{ 

    int i,j; 

     mx=(Form1->ScrollBox2->Width)/DlMod; 
     my=(Form1->ScrollBox2->Height)/ShMod; 

     mxyIm2=mx; 

     if (my<mx)mxyIm2=my; 
 

     GraphIm2(FN,FX,FY,XcMod,YcMod, XcE, YcE, 

mxyIm2, 0, 2); 

 
       // for (j=0;j<FN; j++) 
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           //Elipse(FX[j],FY[j],2,XcMod,YcMod, XcE, YcE, 

mxyIm2); 
} 

void BuildIm3(double XcE,double YcE) 

{ 
    int i,j; 

     mx=(Form1->ScrollBox2->Width)/DlMod; 

     my=(Form1->ScrollBox2->Height)/ShMod; 

     mxyIm2=mx; 
     if (my<mx)mxyIm2=my; 

 

     GraphIm3(FN,FX,FY,XcMod,YcMod, XcE, YcE, 
mxyIm2, 0, 2); 

 

       // for (j=0;j<FN; j++) 

           //Elipse(FX[j],FY[j],2,XcMod,YcMod, XcE, YcE, 
mxyIm2); 

} 

void GraphIm2(int n, double X[], double Y[], double Xcf, 
double Ycf, 

                double Xce, double Yce, double mxy,int q, int p) 

{ 
       int j; 

        ky = 1; 

        kx = 1; 

        double Xr[300],Yr[300]; 
        NullMas(Xr,300); 

        NullMas(Yr,300); 

//========================================== 
        double** figura; 

        double** matrObert; 

        figura = new double*[n]; 
        matrObert = new double*[n]; 

        for(int i = 0; i < n; i++) 

        { 

            figura[i] = new double[3]; 
            matrObert[i] = new double[3]; 

        } 
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        for(int i = 0; i < n; i++) 

        { 
             figura[i][0] = X[i]; 

             figura[i][1] = Y[i]; 

             figura[i][2] = 1; 
        } 

         double DlDet3, ShDet3,mashtY3,mashtX3 ; 

        ParamDet2(n, X, Y, DlDet3, ShDet3); 

        int kut=60; 
        mashtY3 = DlDet3/ShDet3; 

        mashtX3 = ShDet3/DlDet3; 

 
          /* for(int i = 0; i < n; i++) 

        { 

             figura[i][0] = Xr[i]; 

             figura[i][1] = Yr[i]; 
             figura[i][2] = 1; 

        }  */ 

        double alpha = 120 * M_PI / 180; // В радіанах. 
        matrObert = OberD(alpha,Xcf,Ycf); 

        figura = MultipleMatrix(figura, matrObert, n); 

 
           for(int i = 0; i < n; i++) 

        { 

           X[i] = figura[i][0]; 

           Y[i] = figura[i][1]; 
        }  ParamDet2(n, X, Y, DlDet3, ShDet3); 

        mashtY3 = DlDet3/ShDet3; 

        mashtX3 = ShDet3/DlDet3; 
        if (mashtY3 > 20) 

       { 

       ky = int(mashtY3)/3; 
           // ky=5; 

       } 

        for(j=0;j<n;j++) 

         { 
          Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce; 

          Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce; 
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         } 

     /*   for(int i = 0; i < n; i++) 
        { 

           Xr[i] = figura[i][0]; 

           Yr[i] = figura[i][1]; 
        }  */ 

        /*double DlDet2, ShDet2; 

        ParamDet2(n, X, Y, DlDet2, ShDet2); 

        if (ShDet2==0) { 
          ShDet2=10; 

        } 

        mashtY = DlDet2/ShDet2; 
        mashtX = ShDet2/DlDet2; 

        if (floor(mashtX)==floor(mashtX3)) 

        { 

        vxod=true; 
        alpha = kut * M_PI / 180; // В радіанах. 

        matrObert = OberD(alpha,Xcf,Ycf); 

        figura = MultipleMatrix(figura, matrObert, n); 
        for(int i = 0; i < n; i++) 

        { 

           X[i] = figura[i][0]; 
           Y[i] = figura[i][1]; 

        } 

        double DlDet2, ShDet2; 

        ParamDet2(n, X, Y, DlDet2, ShDet2); 
        mashtY = DlDet2/ShDet2; 

        mashtX = ShDet2/DlDet2; 

        } 
        if(mashtY > 20) 

       { 

       ky = int(mashtY)/3; 
           // ky=5; 

       } 

        if(mashtX > 20) {kx = 20; 

                         } 
        for(j=0;j<n;j++) 

         { 
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          Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce; 

          Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce; 
         } 

        

//============================================= 
        for(int i = 0; i < n; i++) 

        { 

             figura[i][0] = Xr[i]; 

             figura[i][1] = Yr[i]; 
             figura[i][2] = 1; 

        }    double alpha2 ; 

        if (vxod){ 
         alpha2 = -(2*kut) * M_PI / 180; // В радіанах. 

         } 

        else 

        {    alpha2 = -(kut) * M_PI / 180; // В радіанах. 
        } 

        matrObert = OberD(alpha2,Xcf,Ycf); 

 
        figura = MultipleMatrix(figura, matrObert, n); 

        for(int i = 0; i < n; i++) 

        { 
           Xr[i] = figura[i][0]; 

           Yr[i] = figura[i][1]; 

        }       

//============================================= 
         for(j=0;j<n;j++) 

         { 

          Xr2[j]=Xr[j]; 
          Yr2[j]=Yr[j]; 

         } 

       Form1->Image2->Canvas->Pen->Width=p; 
       Form1->Image2->Canvas->Pen->Mode=pmCopy; 

        switch(q) 

         { 

          case 1:Form1->Image2->Canvas->Pen-
>Color=clRed;break; 
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          case 2:Form1->Image2->Canvas->Pen-

>Color=clBlue;break; 
          case 3:Form1->Image2->Canvas->Pen-

>Color=clGreen;break; 

          case 4:Form1->Image2->Canvas->Pen-
>Color=clGray;break; 

          default:Form1->Image2->Canvas->Pen-

>Color=clBlack; 

         } 
        for(j=0;j<n;j++) 

        { 

         if (j==0)Form1->Image2->Canvas-
>MoveTo(Xr[j],Yr[j]); 

         else Form1->Image2->Canvas->LineTo(Xr[j],Yr[j]); 

        } 

        Form1->Image2->Canvas->LineTo(Xr[0],Yr[0]); 
 

        for (j=0;j<FN; j++) 

        Form1->Image2->Canvas->Ellipse(Xr2[j]-5,Yr2[j]-
5,Xr2[j]+5,Yr2[j]+5); 

} 

double angle( int x1, int y1, int x2, int y2) 
{  

    return acos( 

(x1*x2+y1*y2)/(sqrt((double)x1*x1+y1*y1)*sqrt((double)x2*x2+y2

*y2))); 
} 

void GraphIm3(int n, double X[], double Y[], double Xcf, 

double Ycf, 
                double Xce, double Yce, double mxy,int q, int p) 

{ 

       int j; 
        ky = 1; 

        kx = 1; 

        double Xr[300],Yr[300]; 

        NullMas(Xr,300); 
        NullMas(Yr,300); 
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//================================================ 
        double** figura; 

        double** matrObert; 

        figura = new double*[n]; 
        matrObert = new double*[n]; 

 

        for(int i = 0; i < n; i++) 

        { 
            figura[i] = new double[3]; 

            matrObert[i] = new double[3]; 

        } 
        for(int i = 0; i < n; i++) 

        { 

             figura[i][0] = X[i]; 

             figura[i][1] = Y[i]; 
             figura[i][2] = 1; 

        } 

        bool ok=false; 
        int kil=0; 

        double DlDet3, ShDet3,mashtY3,mashtX3 ; 

        int kut=60; 
         double alpha; 

        while (!ok) 

         { 

              ParamDet2(n, X, Y, DlDet3, ShDet3); 
         mashtY3 = DlDet3/ShDet3; 

        mashtX3 = ShDet3/DlDet3; 

        if (mashtY3>5) 
        { 

        ky=int(mashtY3)/3; 

        ok=true; 
        break; 

        } 

        if (kil==3){ 

        ok=true; 
        break; 

        } 
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        kil++; 

         alpha = kut * M_PI / 180; // В радіанах. 
        matrObert = OberD(alpha,Xcf,Ycf); 

         figura = MultipleMatrix(figura, matrObert, n); 

           for(int i = 0; i < n; i++) 
        { 

           X[i] = figura[i][0]; 

           Y[i] = figura[i][1]; 

        } 
      } 

      for(j=0;j<n;j++) 

         { 
          Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce; 

          Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce; 

         } 

              for(int i = 0; i < n; i++) 
        { 

             figura[i][0] = Xr[i]; 

             figura[i][1] = Yr[i]; 
             figura[i][2] = 1; 

        } 

          double alpha2=0; 
         for(int i=0;i<kil;i++){ 

 

        alpha2 =- kut* M_PI / 180; 

          matrObert = OberD(alpha2,Xcf,Ycf); 
 

        figura = MultipleMatrix(figura, matrObert, n);}     

kutpov=kil; 
        for(int i = 0; i < n; i++) 

        { 

           Xr[i] = figura[i][0]; 
           Yr[i] = figura[i][1]; 

        } 

              /* matrObert = OberD(alpha,Xcf,Ycf); 

 
        figura = MultipleMatrix(figura, matrObert, n); 

        for(int i = 0; i < n; i++) 
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        { 

           X[i] = figura[i][0]; 
           Y[i] = figura[i][1]; 

        } 

        double DlDet2, ShDet2; 
        ParamDet2(n, X, Y, DlDet2, ShDet2); 

        if (ShDet2==0) { 

          ShDet2=10; 

        } 
        mashtY = DlDet2/ShDet2; 

        mashtX = ShDet2/DlDet2; 

        if (floor(mashtX)==floor(mashtX3)) 
        { 

        vxod=true; 

        alpha = kut * M_PI / 180; // В радіанах. 

        matrObert = OberD(alpha,Xcf,Ycf); 
        figura = MultipleMatrix(figura, matrObert, n); 

        for(int i = 0; i < n; i++) 

        { 
           X[i] = figura[i][0]; 

           Y[i] = figura[i][1]; 

        } 
        double DlDet2, ShDet2; 

        ParamDet2(n, X, Y, DlDet2, ShDet2); 

 

        mashtY = DlDet2/ShDet2; 
        mashtX = ShDet2/DlDet2; 

        } 

        if(mashtY > 20) 
       { 

       ky = int(mashtY)/3; 

           // ky=5; 
       } 

        if(mashtX > 20) {kx = 20; 

                         } 

        for(j=0;j<n;j++) 
         { 

          Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce; 
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          Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce; 

         } 
//========================================== 

        for(int i = 0; i < n; i++) 

        { 
             figura[i][0] = Xr[i]; 

             figura[i][1] = Yr[i]; 

             figura[i][2] = 1; 

        }    double alpha2 ; 
        if (vxod){ 

         alpha2 = -(2*kut) * M_PI / 180; // В радіанах. 

         } 
        else 

        {    alpha2 = -(kut) * M_PI / 180; // В радіанах. 

        } 

        matrObert = OberD(alpha2,Xcf,Ycf); 
 

        figura = MultipleMatrix(figura, matrObert, n);   */ 

     /*   for(int i = 0; i < n; i++) 
        { 

           Xr[i] = figura[i][0]; 

           Yr[i] = figura[i][1]; 
        } */ 

//==========================================         

for(j=0;j<n;j++) 

         { 
          Xr2[j]=Xr[j]; 

          Yr2[j]=Yr[j]; 

         } 
         double Xfind,Yfind,Dlfind,Shfind; 

      ParamDet4(n,Xr,Yr,Yfind,Xfind,Dlfind,Shfind); 

      Form1->ScrollBox2->HorzScrollBar-
>Position=(Xfind+(Dlfind/2))*0.66;//1111; 

      Form1->ScrollBox2->VertScrollBar-

>Position=(Yfind+(Shfind/4))*0.66;//961; 

       Form1->Image2->Canvas->Pen->Width=p; 
       Form1->Image2->Canvas->Pen->Mode=pmCopy; 

        switch(q) 
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         { 

          case 1:Form1->Image2->Canvas->Pen-
>Color=clRed;break; 

          case 2:Form1->Image2->Canvas->Pen-

>Color=clBlue;break; 
          case 3:Form1->Image2->Canvas->Pen-

>Color=clGreen;break; 

          case 4:Form1->Image2->Canvas->Pen-

>Color=clGray;break; 
          default:Form1->Image2->Canvas->Pen-

>Color=clBlack; 

         } 
 

        for(j=0;j<n;j++) 

        { 

         if (j==0)Form1->Image2->Canvas-
>MoveTo(Xr[j],Yr[j]); 

         else Form1->Image2->Canvas->LineTo(Xr[j],Yr[j]); 

        } 
        Form1->Image2->Canvas->LineTo(Xr[0],Yr[0]); 

 

        for (j=0;j<FN; j++) 
        Form1->Image2->Canvas->Ellipse(Xr2[j]-5,Yr2[j]-

5,Xr2[j]+5,Yr2[j]+5); 

} 

 
  bool pnpoly(int npol, double xp[], double yp[], double x, 

double y) 

  { 
    bool c = false; 

    for (int i = 0, j = npol - 1; i < npol; j = i++) 

    { 
      if ((((yp[i] <= y) && (y < yp[j])) || ((yp[j] <= y) && (y < 

yp[i]))) && 

        (((yp[j] - yp[i]) != 0) && (x > ((xp[j] - xp[i]) * (y - 

yp[i]) / (yp[j] - yp[i]) + xp[i])))) 
          c = !c; 

    } 
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    return c; 

  } 
void __fastcall TForm1::Image2MouseDown(TObject 

*Sender, 

      TMouseButton Button, TShiftState Shift, int X, int Y) 
{ 

  int Xr,Yr; 

  Image2->Canvas->Pen->Mode=pmXor; 

  Image2->Canvas->Pen->Color=clGreen; 
  Image2->Canvas->Pen->Width=2; 

 

  double FX2[10],FY2[10]; 
  for(int i = 0; i < 10; i++) 

  { 

       FX2[i] = 0; FY2[i] = 0; 

       FX2[i] =Xr2[i]; //floor(Xr2[i]); 
       FY2[i] =Yr2[i]; //floor(Yr2[i]); 

  } 

  if(Button==mbLeft && KilksPointDet < 3) 
   { 

    if(pointselectmode == false) 

    { 
     // Перевірка, що точка знаходиться у фігурі. 

     bool InFigure = pnpoly(FN,FX2,FY2, X, Y); 

     if(InFigure == true) 

     { 
      Xd[indexPoints]=X; Xt[indexPoints]=X; 

      Yd[indexPoints]=Y; Yt[indexPoints]=Y; 

 
      if (indexPoints==0){ 

      Image2->Canvas-

>MoveTo(Xt[indexPoints],Yt[indexPoints]); 
       Form1->Image2->Canvas->Ellipse(Xt[indexPoints]-

5,Yt[indexPoints]-5,Xt[indexPoints]+5,Yt[indexPoints]+5); 

         } 

      else 
       {Image2->Canvas-

>LineTo(Xt[indexPoints],Yt[indexPoints]);  Form1->Image2-
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>Canvas->Ellipse(Xt[indexPoints]-5,Yt[indexPoints]-

5,Xt[indexPoints]+5,Yt[indexPoints]+5);  } 
      indexPoints++; 

      } 

    } 
    else if(pointselectmode == true) 

    { 

      // Знаходимо найближчу точку фігури. 

      double dist[10]; 
      for(int i = 0; i < FN; i++) 

      { 

          dist[i] = sqrt(pow(FX2[i]-X,2)+pow(FY2[i]-Y,2)); 
      } 

      double min = dist[0]; 

      int index = 0; 

      for(int i = 1; i < FN; i++) 
      { 

          if(dist[i] < min && dist[i] != 0) 

          { 
            min = dist[i]; 

            index = i; 

          } 
      } 

       if(selectedpoints[index] == false) 

      { 

      // Замалюємо точку: 
      Form1->Image2->Canvas->Brush->Color = clRed; 

      Form1->Image2->Canvas->Brush->Style = bsSolid; 

      Form1->Image2->Canvas-
>FloodFill(FX2[index],FY2[index],clBlack,fsBorder); 

      Form1->Image2->Canvas->Brush->Color = clWhite; 

      Xd[indexPoints]=FX2[index]; 
Xt[indexPoints]=FX2[index]; 

      Yd[indexPoints]=FY2[index]; 

Yt[indexPoints]=FY2[index]; 

 
      if (indexPoints==0)Image2->Canvas-

>MoveTo(Xt[indexPoints],Yt[indexPoints]); 
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      else Image2->Canvas-

>LineTo(Xt[indexPoints],Yt[indexPoints]); 
      indexPoints++; 

      selectedpoints[index] = true; 

      } 
    } 

   } 

  else if(Button==mbRight) 

    { 
      if(pointselectmode == true && indexPoints>0) 

      { 

        //Form1->Image2->Canvas->Brush->Color = clWhite; 
        //Form1->Image2->Canvas->Brush->Style = bsSolid; 

        //Form1->Image2->Canvas-

>FloodFill(Xt[indexPoints],Yt[indexPoints],clBlack,fsBorder); 

 
        //Image2->Canvas-

>MoveTo(Xt[indexPoints],Yt[indexPoints]); 

        indexPoints--; 
        Image2->Canvas-

>LineTo(Xt[indexPoints],Yt[indexPoints]); 

      } 
      if(pointselectmode == false && indexPoints>0) 

      { 

       indexPoints--; 

       Image2->Canvas-
>LineTo(Xt[indexPoints],Yt[indexPoints]); 

      } 

    } 
 if(indexPoints > 2) 

    { 

      Xd[indexPoints]=Xd[0]; 
      Yd[indexPoints]=Yd[0]; 

      Image2->Canvas->LineTo(Xt[0],Yt[0]); 

      KilksPointDet=indexPoints; 

      indexPoints=0; 
      Button5->Enabled=true; 

      Edit14->Color=clGreen; 



 196 

    } 

} 
//------------------------------------------------------------------------

void __fastcall TForm1::Button3Click(TObject *Sender) 

{ 
   if (L11){ 

   ShowMessage("Error!!!"); 

   } 

   else if (L111) 
   { 

   ShowMessage("Error!!! "); 

   } 
/*     Form1->PageControl1->ActivePage=TabSheet1; 

     //Обернена функція: 

     double Xg[300],Yg[300]; 

     NullMas(Xg,300); 
     NullMas(Yg,300); 

     double XcE=Image2->Width/2; 

     double YcE=Image2->Height/2; 
//========================================== 

     double** figura; 

     double** matrObert; 
     figura = new double*[KilksPointDet]; 

     matrObert = new double*[KilksPointDet]; 

     int kut=0; 

     if (vxod) 
     {kut=120; 

     } 

     else 
     {kut=60; 

     } 

     for(int i = 0; i < KilksPointDet; i++) 
     { 

        figura[i] = new double[3]; 

        matrObert[i] = new double[3]; 

     } 
     for(int i = 0; i < KilksPointDet; i++) 

     { 
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             figura[i][0] = Xd[i]; 

             figura[i][1] = Yd[i]; 
             figura[i][2] = 1; 

     } 

     double alpha2 = kut * M_PI / 180; // В радіанах. 
     matrObert = OberD(alpha2,XcMod,YcMod); 

 

     figura = MultipleMatrix(figura, matrObert, 

KilksPointDet); 
     for(int i = 0; i < KilksPointDet; i++) 

     { 

           Xd[i] = figura[i][0]; 
           Yd[i] = figura[i][1]; 

     } 

//========================================== 

     for(int j=0;j<KilksPointDet;j++) 
     { 

          Xg[j]=((Xd[j]-XcE)/(mxyIm2*kx/1.2))+XcMod; 

          Yg[j]=((Yd[j]-YcE)/(mxyIm2*ky/1.2))+YcMod; 
     } 

//========================================== 

     for(int i = 0; i < KilksPointDet; i++) 
     { 

             figura[i][0] = Xg[i]; 

             figura[i][1] = Yg[i]; 

             figura[i][2] = 1; 
     } 

     double alpha3 = -kut * M_PI / 180; // В радіанах. 

     matrObert = OberD(alpha3,XcMod,YcMod); 
 

     figura = MultipleMatrix(figura, matrObert, 

KilksPointDet); 
     for(int i = 0; i < KilksPointDet; i++) 

     { 

           Xg[i] = figura[i][0]; 

           Yg[i] = figura[i][1]; 
     } 

//========================================== 
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    DrawFigure(Xg,Yg,KilksPointDet,clWhite,clBlue);   

//================================================ 
     double Xg2[300], Yg2[300]; 

     NullMas(Xg2,300); 

     NullMas(Yg2,300); 
     kx=((a/2)*mashx); 

     ky=(sqrt(3)/2 * a)*mashy; 

 

     double X1,X2,X3; 
     double Y1,Y2,Y3; 

     X1 = x0-a/2*mashx; 

     Y1 = y0; 
     X2 = x0; 

     Y2 = y0-(sqrt(3)/2 * a)*mashy; 

     X3 = x0+a/2*mashx; 

     Y3 = y0; 
    // double MatrOb[7][3]; 

     double** MatrOb; 

     double** MatrOb2; 
     double** MatrOb3; 

     double** base; 

     MatrOb = new double*[7]; 
     MatrOb2 = new double*[3]; 

     MatrOb3 = new double*[3]; 

     base = new double*[3]; 

    // matrObert = new double*[KilksPointDet]; 
      for(int i = 0; i < 7; i++) 

     { 

        MatrOb[i] = new double[3]; 
       // matrObert[i] = new double[3]; 

     } 

      for(int i = 0; i < 3; i++) 
     { 

        base[i] = new double[3]; 

        MatrOb2[i] = new double[7]; 

        MatrOb3[i] = new double[7]; 
       // matrObert[i] = new double[3]; 

     } 
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     MatrOb [0][0]=1; 

      MatrOb[0][1]=0; 
      MatrOb[0][2]=0; 

      MatrOb[1][0]=0; 

      MatrOb[1][1]=1; 
      MatrOb[1][2]=0; 

      MatrOb[2][0]=0; 

      MatrOb[2][1]=0; 

      MatrOb[2][2]=1; 
      MatrOb[3][0]=double(1.0/2); 

      MatrOb[3][1]=double(1.0/2); 

      MatrOb[3][2]=0; 
      MatrOb[4][0]=double(1.0/2); 

      MatrOb[4][1]=0; 

      MatrOb[4][2]=double(1.0/2); 

      MatrOb[5][0]=0; 
      MatrOb[5][1]=double(1.0/2); 

      MatrOb[5][2]=double(1.0/2); 

      MatrOb[6][0]=double(1.0/3); 
      MatrOb[6][1]=double(1.0/3); 

      MatrOb[6][2]=double(1.0/3); 

     double kx1[5]; 
     double kx2[5]; 

     double kx3[5]; 

     NullMas(kx1,5); 

     NullMas(kx2,5); 
     NullMas(kx3,5); 

        for(int i=0;i<7;i++) 

   { 
      for(int j = 0; j < 3; j++) 

      {  StringGrid1->Cells[0][i+1]=i+1; 

       StringGrid2->Cells[0][i+1]=i+1; 
      //  StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]); 

        StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]); 
     //   StringGrid2->Cells[4][i+1]=FloatToStr(suma[i]); 

     } 
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   } 

     for(int i = 0; i < KilksPointDet; i++) 
     { 

Coef(X1,Y1,X2,Y2,X3,Y3,Xg[i],Yg[i],kx1[i],kx2[i],kx3[i]); 

     } 
//========================================== 

     Memo1->Text = "Координати: "; 

     Memo1->Lines->Add(""); 

     double base2[3][3]; 
     for (int i=0;i<3;i++){ 

     base[0][i]=kx1[i]; 

     base[1][i]=kx2[i]; 
     base[2][i]=kx3[i]; 

     } 

      for (int i=0;i<3;i++) 

       { 
       for (int j=0;j<3;j++) 

       { 

       base2[i][j]=base[i][j]; 
       }} 

     /* base[0][0]=1; 

      base[0][1]=2; 
      base[0][2]=3; 

      base[1][0]=4; 

      base[1][1]=5; 

      base[1][2]=6; 
      base[2][0]=4; 

      base[2][1]=5; 

      base[2][2]=4;   */ 
  /*   double res[3][7];    double res2[3][7]; 

 

   double op; 
 /*  op=determinant(base,3); 

   for(int i=0;i<3;i++) 

{ 

    for ( int j=0;j<3;j++) 
    { 

                    if((i+j)%2==0) 
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                    { 

                    base2[i][j]=minor(i,j,base,3); //funn1k(Bee,n); 
                    } 

                    else 

                    { 
                     base2[i][j]=-(minor(i,j,base,3)); 

                    } 

    } 

} 
for(int i=0;i<3;i++) 

{ 

        for(int j=0;j<3;j++) 
        { 

        base[i][j]=base2[i][j]; 

 

        } 
} 

for(int i=0;i<3;i++) 

{ 
        for(int j=0;j<3;j++) 

        { 

 
        base2[i][j]=base[j][i]; 

        } 

} 

for(int i=0;i<3;i++) 
{ 

        for(int j=0;j<3;j++) 

        { 
        base2[i][j]=base2[i][j]/op; 

        } 

} 
for(int i=0;i<3;i++) 

{ 

        for(int j=0;j<3;j++) 

        { 
        base[i][j]=base2[i][j]; 

        } 
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}   */ 

      /*  double suma[7]; 
       for (int i=0;i<7;i++) 

       { 

       for (int j=0;j<3;j++) 
       { 

       MatrOb2[j][i]=MatrOb[i][j]; 

       }} 

      /* for (int i=0;i<3;i++) 
       { 

       for (int j=0;j<7;j++) 

       { 
       =res[i][j]; 

       }} */ 

    /*   MatrOb3=MultipleMatrix2(base,MatrOb2,3); 

        for (int i=0;i<7;i++) 
       { 

       for (int j=0;j<3;j++) 

       { 
       MatrOb[i][j]=MatrOb3[j][i]; 

       }} 

       suma[0]=0; 
       suma[1]=0; 

       suma[2]=0; 

       suma[3]=0; 

       suma[4]=0; 
       suma[5]=0; 

       suma[6]=0; 

         for (int i=0;i<7;i++) 
       { 

       for (int j=0;j<3;j++) 

       { 
       suma[i]+=MatrOb[i][j]; 

       }} 

         /* for (int i=0;i<3;i++) 

       { 
       for (int j=0;j<7;j++) 

       { 
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       res2[i][j]=MatrOb3[i][j]; 

       }} 
      /*  for (int i=0;i<7;i++) 

       { 

       for (int j=0;j<3;j++) 
       { 

       MatrOb[j][i]=res[i][j]; 

       }}  */ 

      /*  for(int i=0;i<7;i++) 
   { 

      for(int j = 0; j < 3; j++) 

      {  StringGrid1->Cells[0][i+1]=i+1; 
       StringGrid2->Cells[0][i+1]=i+1; 

      //  StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]); 

        StringGrid2-
>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]); 

        StringGrid2->Cells[4][i+1]=FloatToStr(suma[i]); 

     } 
   } 

        for(int i=0;i<3;i++) 

   { 
      for(int j = 0; j < 3; j++) 

      {  StringGrid3->Cells[0][i+1]=i+1; 

 

        StringGrid3->Cells[j+1][i+1]=FloatToStr(base[i][j]); 
      } 

   } 

        Memo1->Lines->Add(""); 
     for(int i = 0; i < KilksPointDet; i++) 

     { 

     Memo1->Text = Memo1->Text + "Значення 
координати" + FloatToStrF(i+1, ffGeneral, 6, 6)+" "; 

     Memo1->Text = Memo1->Text + "x1="+""; 

     Memo1->Text = Memo1->Text + " " + 

FloatToStrF(kx3[i], ffGeneral, 10, 10)+" "; 
     Memo1->Lines->Add(""); 

     Memo1->Text = Memo1->Text + "x2="+""; 
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     Memo1->Text = Memo1->Text + " " + 

FloatToStrF(kx2[i], ffGeneral, 10, 10)+" "; 
     Memo1->Lines->Add(""); 

     Memo1->Text = Memo1->Text + "x3="+""; 

     Memo1->Text = Memo1->Text + " " + 
FloatToStrF(kx1[i], ffGeneral, 10, 10)+" "; 

     Memo1->Lines->Add(""); 

      Memo1->Text = Memo1->Text + "x1+x2+x3="+""; 

     Memo1->Text = Memo1->Text + " " + 
FloatToStrF(kx1[i]+kx2[i]+kx3[i], ffGeneral, 8, 8); 

     Memo1->Lines->Add(""); 

     } 
    

//=============================================== 

} 

//------------------------------------------------------------------------ 
void Coef(double x1,double y1,double x2,double y2,double 

x3,double y3,double x,double y, 

double &kx1, double &kx2, double &kx3) 
{ 

    double a,b,c,s,sum,sum2; 

    s = double(0.5 *(double(fabs((double(x2 - x1)) * 
(double(y3 - y1)) - (double(x3 - x1)) * (double(y2 - y1)))))); 

    a = double(0.5 *(double(fabs((double(x2 - x1)) * 

(double(y - y1)) - (double(x - x1)) * (double(y2 - y1)))))); 

    b = double(0.5 *(double(fabs((double(x - x1)) * 
(double(y3 - y1)) - (double(x3 - x1)) * (double(y - y1)))))); 

    c = double(0.5 *(double(fabs((double(x2 - x)) * 

(double(y3 - y)) - (double(x3 - x)) * (double(y2 - y)))))); 
    kx1 = a/s; 

    kx2 = b/s; 

    kx3 = c/s; 
    sum=kx1+kx2; 

    sum2=sum+kx3; 

} 

//------------------------------------------------------------------------ 
double** Obert(double alpha) 

{ 
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   double **MatrObert; 

   MatrObert = new double*[3]; 
   for(int i = 0; i < 3; i++) 

       MatrObert[i] = new double[3]; 

   for(int i = 0; i < 3; i++) 
   { 

       for(int j = 0; j < 3; j++) 

       { 

         MatrObert[i][j] = 0; 
       } 

       MatrObert[i][i] = 1; 

   } 
   MatrObert[0][0] = cos(alpha); 

   MatrObert[0][1] = sin(alpha); 

   MatrObert[1][0] = -sin(alpha); 

   MatrObert[1][1] = cos(alpha); 
   return MatrObert; 

} 

double** MultipleMatrix(double** figura, double **matr, 
int N1) 

{ 

 double **result; 
 result = new double*[N1]; 

 for(int i = 0; i < N1; i++) 

     result[i] = new double[3]; 

 for(int i = 0; i < N1; i++) 
 { 

  for(int j = 0; j < 3; j++) 

  { 
                        result[i][j] = 0; 

   for(int k = 0; k < 3; k++) 

   { 
    result[i][j] += figura[i][k] * 

matr[k][j]; 

   } 

  } 
 } 

 return result; 
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} 

double** MultipleMatrix2(double** figura, double **matr, 
int N1=3) 

{ 

 double **result; 
 result = new double*[N1]; 

 for(int i = 0; i < N1; i++) 

     result[i] = new double[7]; 

 
 for(int i = 0; i < N1; i++) 

 { 

  for(int j = 0; j < 7; j++) 
  { 

                        result[i][j] = 0; 

   for(int k = 0; k < 3; k++) 

   { 
    result[i][j] += figura[i][k] * 

matr[k][j]; 

   } 
  } 

 } 

 return result; 
} 

//------------------------------------------------------------------------ 

double **OberD(double Alfa,double a1,double a2) 

{ 
        double **MatrPer; 

        MatrPer=new double *[3]; 

        for (int i=0;i<3;i++) 
        { 

         MatrPer[i]=new double[3]; 

        } 
        for (int i=0;i<3;i++) 

        { 

                for (int j=0;j<3;j++) 

                { 
                  MatrPer[i][j]=0; 

                } 
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        } 

        MatrPer[2][2]=1; 
        MatrPer[0][0]=cos(Alfa); 

        MatrPer[1][1]=cos(Alfa); 

        MatrPer[0][1]=sin(Alfa); 
        MatrPer[1][0]=-sin(Alfa); 

        MatrPer[2][0]=(-a1*cos(Alfa))+(a2*sin(Alfa))+a1; 

        MatrPer[2][1]=(-a1*sin(Alfa))-(a2*cos(Alfa))+a2; 

        return MatrPer; 
} 

//------------------------------------------------------------------------ 

void __fastcall TForm1::PointSelectModeClick(TObject 
*Sender) 

{ 

    pointselectmode = !pointselectmode; 

} 
//------------------------------------------------------------------------ 

   double **Gomo(double k,double a1,double a2) 

{ 
        double **MatrPer; 

        MatrPer=new double *[3]; 

        for (int i=0;i<3;i++) 
        { 

         MatrPer[i]=new double[3]; 

        } 

        for (int i=0;i<3;i++) 
        { 

                for (int j=0;j<3;j++) 

                { 
                  MatrPer[i][j]=0; 

                } 

        } 
        MatrPer[2][2]=1; 

        MatrPer[0][0]=k; 

        MatrPer[1][1]=k; 

        MatrPer[2][0]=(1-k)*a1; 
        MatrPer[2][1]=(1-k)*a2; 

        return MatrPer; 
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} 

void __fastcall TForm1::BitBtn1Click(TObject *Sender) 
{  BitBtn1->Enabled=false; 

Button12->Visible=true; 

  Form1->PageControl1->ActivePage=TabSheet3; 
  StringGrid1->Cells[0][0]="№"; 

  StringGrid1->Cells[1][0]="X1"; 

  StringGrid1->Cells[2][0]="X2"; 

  StringGrid1->Cells[3][0]="X3"; 
  StringGrid1->Cells[4][0]="Сума"; 

  StringGrid2->Cells[0][0]="№"; 

  StringGrid3->Cells[0][0]="№"; 
         StringGrid2->Cells[1][0]="X1"; 

  StringGrid2->Cells[2][0]="X2"; 

  StringGrid2->Cells[3][0]="X3"; 

  StringGrid2->Cells[4][0]="Сума"; 
  StringGrid3->Cells[1][0]="X1"; 

  StringGrid3->Cells[2][0]="X2"; 

  StringGrid3->Cells[3][0]="X3"; 
 // StringGrid1->Cells[4][0]="Сума"; 

} 

//------------------------------------------------------------------------ 
 double determinant(double **x,int n) 

{ 

 int i, j; 

 double det=0; 
 int e, f, g, h; 

 if(n == 1) 

 { 
  return x[0][0]; 

 } 

 else if (n == 2) 
 { 

  return (x[0][0]*x[1][1])-(x[0][1]*x[1][0]); 

 } 

 else if (n >= 3) 
 { 

  double **c; 
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  c = new double *[n - 1]; 

  for (i = 0; i < n; i++) 
   c[i] = new double[n - 1]; 

 

  for (j = 0; j < n; j++) 
  { 

   e = 0; 

   for (g = 1; g < n; g++) 

   { 
    f = 0; 

    for(h=0;h<n;h++) 

     if (h != j) 
     { 

     c[e][f] = x[g][h]; 

       f++; 

     } 
    e++; 

   } 

   det += pow(-1, j + 
2)*x[0][j]*determinant(c,n-1); 

  } 

  return det; 
 } 

        return det; 

} 

double minor(int i2, int j2, double **x, int n) 
{ 

double jj = 0; 

double **kk; 
kk = new double *[n]; 

for (int i = 0; i < n; i++) 

kk[i] = new double[n]; 
int i3=0,j3=0; 

for (int i=0;i<n;i++) 

        { 

        for (int j=0;j<n;j++) 
        { 

        if(i!=i2 && j!=j2) 
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        { 

        kk[i3][j3]=x[i][j]; 
                j3++; 

                if (j3==n-1) 

                { 
                j3=0;i3++; 

                } 

              } 

        }       } 
jj = determinant(kk,n-1); 

return jj; 

} 
void __fastcall TForm1::Button4Click(TObject *Sender) 

{ 

Form1->PageControl1->ActivePage=TabSheet2; 

      ClearGraph(Image2); 
      Button5->Enabled=false; 

      Edit14->Color=clRed; 

      BitBtn1->Enabled=false; 
   Button4->Enabled=false; 

   //DrawGraph(Image2); 

      // Form1->ScrollBox2->Width/2; 
      // Form1->ScrollBox2->Height/2; 

   double XcE,YcE,XcIm3,YcIm3; 

   XcE=Image2->Width/2; 

   YcE=Image2->Height/2; 
   KilksPointDet = 0; 

   for(int i = 0; i < 10; i++) 

   { 
     selectedpoints[i] = false; 

   } 

   ParamDet(); 
   ParamModeli(); 

   BuildIm3(XcE,YcE); 

} 

//------------------------------------------------------------------------
void __fastcall TForm1::Button5Click(TObject *Sender) 

{  Button4->Enabled=false; 



 211 

BitBtn1->Enabled=true; 

 
Form1->PageControl1->ActivePage=TabSheet1; 

     //Обернена функція: 

     double Xg[300],Yg[300]; 
     NullMas(Xg,300); 

     NullMas(Yg,300); 

     double XcE=Image2->Width/2; 

     double YcE=Image2->Height/2; 
//========================================== 

     double** figura; 

     double** matrObert; 
     figura = new double*[KilksPointDet]; 

     matrObert = new double*[KilksPointDet]; 

     for(int i = 0; i < KilksPointDet; i++) 

     { 
        figura[i] = new double[3]; 

        matrObert[i] = new double[3]; 

     } 
     int kut=60; 

       double alpha2=0; 

        for(int i = 0; i < KilksPointDet; i++) 
     { 

             figura[i][0] = Xd[i]; 

             figura[i][1] = Yd[i]; 

             figura[i][2] = 1; 
     } 

         for(int i=0;i<kutpov;i++){ 

        alpha2 = kut* M_PI / 180; 
          matrObert = OberD(alpha2,XcMod,YcMod); 

        figura = MultipleMatrix(figura, matrObert, 

KilksPointDet);} 
        for(int i = 0; i < KilksPointDet; i++) 

        { 

           Xd[i] = figura[i][0]; 

           Yd[i] = figura[i][1]; 
        } 

      for(int j=0;j<KilksPointDet;j++) 



 212 

     { 

          Xg[j]=((Xd[j]-XcE)/(mxyIm2*kx/1.2))+XcMod; 
          Yg[j]=((Yd[j]-YcE)/(mxyIm2*ky/1.2))+YcMod; 

     } 

       for(int i = 0; i < KilksPointDet; i++) 
     { 

             figura[i][0] = Xg[i]; 

             figura[i][1] = Yg[i]; 

             figura[i][2] = 1; 
     } 

         for(int i=0;i<kutpov;i++){ 

 
        alpha2 = -kut* M_PI / 180; 

          matrObert = OberD(alpha2,XcMod,YcMod); 

        figura = MultipleMatrix(figura, matrObert, 

KilksPointDet);} 
        for(int i = 0; i < KilksPointDet; i++) 

        { 

           Xd[i] = figura[i][0]; 
           Yd[i] = figura[i][1]; 

        } 

         for(int i = 0; i < KilksPointDet; i++) 
     { 

           Xg[i] = figura[i][0]; 

           Yg[i] = figura[i][1]; 

     } 
     /*if (vxod) 

     {kut=120; 

     } 
     else 

     {kut=60; 

     } 
     for(int i = 0; i < KilksPointDet; i++) 

     { 

        figura[i] = new double[3]; 

        matrObert[i] = new double[3]; 
     } 

     for(int i = 0; i < KilksPointDet; i++) 
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     { 

             figura[i][0] = Xd[i]; 
             figura[i][1] = Yd[i]; 

             figura[i][2] = 1; 

     } 
     double alpha2 = kut * M_PI / 180; // В радіанах. 

     matrObert = OberD(alpha2,XcMod,YcMod); 

 

     figura = MultipleMatrix(figura, matrObert, 
KilksPointDet); 

     for(int i = 0; i < KilksPointDet; i++) 

     { 
           Xd[i] = figura[i][0]; 

           Yd[i] = figura[i][1]; 

     } 

//========================================== 
     for(int j=0;j<KilksPointDet;j++) 

     { 

          Xg[j]=((Xd[j]-XcE)/(mxyIm2*kx/1.2))+XcMod; 
          Yg[j]=((Yd[j]-YcE)/(mxyIm2*ky/1.2))+YcMod; 

     } 

//========================================== 
     for(int i = 0; i < KilksPointDet; i++) 

     { 

             figura[i][0] = Xg[i]; 

             figura[i][1] = Yg[i]; 
             figura[i][2] = 1; 

     } 

     double alpha3 = -kut * M_PI / 180;  
     matrObert = OberD(alpha3,XcMod,YcMod); 

 

     figura = MultipleMatrix(figura, matrObert, 
KilksPointDet); 

     for(int i = 0; i < KilksPointDet; i++) 

     { 

           Xg[i] = figura[i][0]; 
           Yg[i] = figura[i][1]; 

     }      */ 
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//========================================== 

    DrawFigure(Xg,Yg,KilksPointDet,clWhite,clBlue); 
     double Xg2[300], Yg2[300]; 

     NullMas(Xg2,300); 

     NullMas(Yg2,300); 
     kx=((a/2)*mashx); 

     ky=(sqrt(3)/2 * a)*mashy; 

     double X1,X2,X3; 

     double Y1,Y2,Y3; 
     X1 = x0-a/2*mashx; 

     Y1 = y0; 

     X2 = x0; 
     Y2 = y0-(sqrt(3)/2 * a)*mashy; 

     X3 = x0+a/2*mashx; 

     Y3 = y0; 

    // double MatrOb[7][3]; 
     double** MatrOb; 

     double** MatrOb2; 

     double** MatrOb3; 
     double** base; 

     MatrOb = new double*[7]; 

     MatrOb2 = new double*[3]; 
     MatrOb3 = new double*[3]; 

     base = new double*[3]; 

    // matrObert = new double*[KilksPointDet]; 

      for(int i = 0; i < 7; i++) 
     { 

        MatrOb[i] = new double[3]; 

       // matrObert[i] = new double[3]; 
     } 

      for(int i = 0; i < 3; i++) 

     { 
        base[i] = new double[3]; 

        MatrOb2[i] = new double[7]; 

        MatrOb3[i] = new double[7]; 

       // matrObert[i] = new double[3]; 
     } 

     MatrOb [0][0]=1; 
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      MatrOb[0][1]=0; 

      MatrOb[0][2]=0; 
      MatrOb[1][0]=0; 

      MatrOb[1][1]=1; 

      MatrOb[1][2]=0; 
      MatrOb[2][0]=0; 

      MatrOb[2][1]=0; 

      MatrOb[2][2]=1; 

      MatrOb[3][0]=double(1.0/2); 
      MatrOb[3][1]=double(1.0/2); 

      MatrOb[3][2]=0; 

      MatrOb[4][0]=double(1.0/2); 
      MatrOb[4][1]=0; 

      MatrOb[4][2]=double(1.0/2); 

      MatrOb[5][0]=0; 

      MatrOb[5][1]=double(1.0/2); 
      MatrOb[5][2]=double(1.0/2); 

      MatrOb[6][0]=double(1.0/3); 

      MatrOb[6][1]=double(1.0/3); 
      MatrOb[6][2]=double(1.0/3); 

      double test[3][7]; 

     double kx1[5]; 
     double kx2[5]; 

     double kx3[5]; 

     NullMas(kx1,5); 

     NullMas(kx2,5); 
     NullMas(kx3,5); 

        for(int i=0;i<7;i++) 

   { 
      for(int j = 0; j < 3; j++) 

      {  StringGrid1->Cells[0][i+1]=i+1; 

       StringGrid2->Cells[0][i+1]=i+1; 
      //  StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]); 

        StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]); 
     //   StringGrid2->Cells[4][i+1]=FloatToStr(suma[i]); 

     } 
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   } 

     for(int i = 0; i < KilksPointDet; i++) 
     { 

Coef(X1,Y1,X2,Y2,X3,Y3,Xg[i],Yg[i],kx1[i],kx2[i],kx3[i]); 

     }     
//=============================================== 

     Memo1->Text = "Координати: "; 

     Memo1->Lines->Add(""); 

     double base2[3][3]; 
     for (int i=0;i<3;i++){ 

      base[2][i]= kx1[i]; 

     base[0][i]=  kx3[i];  
     base[1][i]=kx2[i]; 

     } 

      for (int i=0;i<3;i++) 

       { 
       for (int j=0;j<3;j++) 

       { 

       base2[i][j]=base[i][j]; 
       }} 

     /* base[0][0]=1; 

      base[0][1]=2; 
      base[0][2]=3; 

      base[1][0]=4; 

      base[1][1]=5; 

      base[1][2]=6; 
      base[2][0]=4; 

      base[2][1]=5; 

      base[2][2]=4;   */ 
     double res[3][7];    double res2[3][7]; 

   double op; 

 /*  op=determinant(base,3); 
   for(int i=0;i<3;i++) 

{ 

    for ( int j=0;j<3;j++) 

    { 
                    if((i+j)%2==0) 

                    { 
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                    base2[i][j]=minor(i,j,base,3); //funn1k(Bee,n); 

                    } 
                    else 

                    { 

                     base2[i][j]=-(minor(i,j,base,3)); 
                    } 

    } 

} 

for(int i=0;i<3;i++) 
{ 

        for(int j=0;j<3;j++) 

        { 
        base[i][j]=base2[i][j]; 

        } 

} 

for(int i=0;i<3;i++) 
{ 

        for(int j=0;j<3;j++) 

        { 
        base2[i][j]=base[j][i]; 

        } 

} 
for(int i=0;i<3;i++) 

{ 

        for(int j=0;j<3;j++) 

        { 
        base2[i][j]=base2[i][j]/op; 

        } 

} 
for(int i=0;i<3;i++) 

{ 

        for(int j=0;j<3;j++) 
        { 

        base[i][j]=base2[i][j]; 

        } 

}   */ 
        double suma[7]; 

       for (int i=0;i<7;i++) 
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       { 

       for (int j=0;j<3;j++) 
       { 

       MatrOb2[j][i]=MatrOb[i][j]; 

       }} 
       for (int i=0;i<7;i++) 

       { 

       for (int j=0;j<3;j++) 

       { 
       test[j][i]=MatrOb2[j][i]; 

       }} 

      /* for (int i=0;i<3;i++) 
       { 

       for (int j=0;j<7;j++) 

       { 

       =res[i][j]; 
       }} */ 

       MatrOb3=MultipleMatrix2(base,MatrOb2,3); 

        for (int i=0;i<7;i++) 
       { 

       for (int j=0;j<3;j++) 

       { 
       MatrOb[i][j]=MatrOb3[j][i]; 

       }} 

       suma[0]=0; 

       suma[1]=0; 
       suma[2]=0; 

       suma[3]=0; 

       suma[4]=0; 
       suma[5]=0; 

       suma[6]=0; 

         for (int i=0;i<7;i++) 
       { 

       for (int j=0;j<3;j++) 

       { 

       suma[i]+=MatrOb[i][j]; 
       }} 

         /* for (int i=0;i<3;i++) 
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       { 

       for (int j=0;j<7;j++) 
       { 

       res2[i][j]=MatrOb3[i][j]; 

       }} 
      /*  for (int i=0;i<7;i++) 

       { 

       for (int j=0;j<3;j++) 

       { 
       MatrOb[j][i]=res[i][j]; 

       }}  */ 

        for(int i=0;i<7;i++) 
   { 

      for(int j = 0; j < 3; j++) 

      {  StringGrid1->Cells[0][i+1]=i+1; 

       StringGrid2->Cells[0][i+1]=i+1; 
      //  StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]); 

        StringGrid2-
>Cells[j+1][i+1]=FloatToStrF(MatrOb[i][j], ffGeneral, 8, 8); 

        StringGrid2->Cells[4][i+1]=FloatToStr(suma[i]); 

     } 
   } 

        for(int i=0;i<3;i++) 

   { 

      for(int j = 0; j < 3; j++) 
      {  StringGrid3->Cells[0][i+1]=i+1; 

 

        StringGrid3->Cells[j+1][i+1]=FloatToStrF(base[j][i], 
ffGeneral, 8, 8); 

      } 

   } 
        Memo1->Lines->Add(""); 

     for(int i = 0; i < KilksPointDet; i++) 

     { 

     Memo1->Text = Memo1->Text + "Значення 
координати" + FloatToStrF(i+1, ffGeneral, 6, 6)+" "; 

     Memo1->Lines->Add(""); 



 220 

     Memo1->Text = Memo1->Text + "x1="+""; 

     Memo1->Text = Memo1->Text + " " + 
FloatToStrF(kx3[i], ffGeneral, 8, 8)+" "; 

     Memo1->Lines->Add(""); 

     Memo1->Text = Memo1->Text + "x2="+""; 
     Memo1->Text = Memo1->Text + " " + 

FloatToStrF(kx2[i], ffGeneral, 8, 8)+" "; 

     Memo1->Lines->Add(""); 

     Memo1->Text = Memo1->Text + "x3="+""; 
     Memo1->Text = Memo1->Text + " " + 

FloatToStrF(kx1[i], ffGeneral, 8, 8)+" "; 

     Memo1->Lines->Add(""); 
      Memo1->Text = Memo1->Text + "x1+x2+x3="+""; 

     Memo1->Text = Memo1->Text + " " + 

FloatToStrF(kx1[i]+kx2[i]+kx3[i], ffGeneral, 8, 8); 

     Memo1->Lines->Add(""); 
     } 

    } 

void __fastcall TForm1::Edit1Exit(TObject *Sender) 
{ 

  Button1->Enabled=false; 

 if(!TryStrToFloat(Edit1->Text,Lb1)){ 
 // ShowMessage("Error!!! "); 

  Edit7->Color=clRed; 

  L11=true; 

  L1=false; 
   Button3->Visible=true; 

  //Lb1= double(0.01); 

 // Form1->Edit1->Text=Lb1; 
 } 

 else { 

     Lb1 =(double) StrToFloat(Form1->Edit1->Text); 
     if (Lb1<=0 || Lb1>=1){ 

     L11=false; 

     L1=false; 

     Edit7->Color=clRed; 
     Button3->Visible=true; 

     L111=true; 
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    //  Lb1= double(0.01); 

    // ShowMessage("Error!!! "); 
  //   Form1->Edit1->Text=double(0.01); 

     } 

     else 
     { 

     L11=false; 

     L111=false; 

     L1=true; 
     Edit7->Color=clGreen; 

    // Edit2->Enabled=true; 

     Button3->Visible=false; 
       if (Lb1>=Ub1 ) 

   { 

    Edit8->Color=clRed; 

    U1=false; 
     U11=false; 

     Edit8->Color=clRed;   Button6->Visible=true; 

     U111=false; 
     U1111=true; 

   } 

   else { 
   Edit8->Color=clGreen; 

    U11=false; 

     U111=false; 

     U1=true; 
     Edit8->Color=clGreen;       Button6->Visible=false; 

     U1111=false; 

   } 
     } 

   } 

   if (L1 && L2 && L3 && U1 && U2 && U3){ 
   Button1->Enabled=true; 

   } 

   else{ 

     Button1->Enabled=false; 
   } 

} 
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//------------------------------------------------------------------------ 

void __fastcall TForm1::Edit2Exit(TObject *Sender) 
{    Button1->Enabled=false; 

   if(!TryStrToFloat(Edit2->Text,Ub1)){ 

 // ShowMessage("Error!!! "); 
  Edit8->Color=clRed; 

  U11=true; 

  //Lb1= double(0.01); 

 // Form1->Edit1->Text=Lb1; 
 U1=false; 

 U1111=false; 

 Button6->Visible=true; 
 } 

 else { 

     Ub1 =(double) StrToFloat(Form1->Edit2->Text); 

     if (Ub1<=0 || Ub1>=1){ 
     U11=false; 

     Edit8->Color=clRed;  Button6->Visible=true; 

     U111=true; 
     U1=false; 

       U1111=false; 

     } 
     else 

     { 

     U11=false; 

     U111=false; 
     U1=true; 

     U1111=false; 

     Edit8->Color=clGreen; Button6->Visible=false; 
       if (Lb1>=Ub1 ) 

   { 

    Edit8->Color=clRed; 
    U1=false; 

     U11=false; 

     Edit8->Color=clRed;   Button6->Visible=true; 

     U111=false; 
     U1111=true; 

   } 
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   else { 

   Edit8->Color=clGreen; 
    U11=false; 

     U111=false; 

     U1=true; 
     Edit8->Color=clGreen;       Button6->Visible=false; 

     U1111=false; 

   } 

     } 
   } 

    if (L1 && L2 && L3 && U1 && U2 && U3){ 

   Button1->Enabled=true; 
   } 

   else{ 

     Button1->Enabled=false; 

   } 
} 

//------------------------------------------------------------------------

void __fastcall TForm1::Button6Click(TObject *Sender) 
{ 

 if (U11){ 

   ShowMessage("Error!!!!!!"); 
   } 

   else if (U111) 

   { 

   ShowMessage("Error!!! "); 
   } 

   else if (U1111){ 

   ShowMessage("Error!!! є"); 
   } 

} 

//------------------------------------------------------------------------
void __fastcall TForm1::Edit3Exit(TObject *Sender) 

{   Button1->Enabled=false; 

if(!TryStrToFloat(Edit3->Text,Lb2)){ 

 
  Edit9->Color=clRed; 

  L22=true; 
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     L2=false;    Button7->Visible=true; 

 } 
 else { 

     Lb2 =(double) StrToFloat(Form1->Edit3->Text); 

     if (Lb2<=0 || Lb2>=1){ 
     L22=false; 

     Edit9->Color=clRed;   Button7->Visible=true; 

     L222=true; 

        L2=false; 
     } 

     else 

     { 
     L22=false; 

     L222=false; 

     L2=true; 

     Edit9->Color=clGreen; 
       Edit2->Enabled=true;  Button7->Visible=false; 

          if(Lb2>=Ub2){ 

    Edit10->Color=clRed; Button8->Visible=true; 
    U2=false; 

     U22=false; 

     Edit10->Color=clRed; 
     U222=false; 

     U2222=true; 

   } 

   else { 
   Edit10->Color=clGreen;  Button8->Visible=false; 

    U22=false; 

     U222=false; 
     U2=true; 

     Edit10->Color=clGreen; 

      U2222=false; 
   } 

     } 

   } 

    if (L1 && L2 && L3 && U1 && U2 && U3){ 
   Button1->Enabled=true; 

   } 
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   else{ 

     Button1->Enabled=false; 
   } 

} 

//------------------------------------------------------------------------
void __fastcall TForm1::Button7Click(TObject *Sender) 

{ 

   if (L22){ 

   ShowMessage("Error!!! "); 
   } 

   else if (L222) 

   { 
   ShowMessage("Error!!! "); 

   } 

} 

//------------------------------------------------------------------------
void __fastcall TForm1::Button8Click(TObject *Sender) 

{ 

if (U22){ 
   ShowMessage("Error!!! "); 

   } 

   else if (U222) 
   { 

   ShowMessage("Error!!! "); 

   } 

    else if (U2222){ 
   ShowMessage("Error!!! "); 

   } 

} 
//------------------------------------------------------------------------

void __fastcall TForm1::Edit4Exit(TObject *Sender) 

{   Button1->Enabled=false; 
 if(!TryStrToFloat(Edit4->Text,Ub2)){ 

 // ShowMessage("Error!!! "); 

  Edit10->Color=clRed; 

  U22=true; 
  //Lb1= double(0.01); 

 // Form1->Edit1->Text=Lb1; 
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    U2=false; 

    U2222=false;  Button8->Visible=true; 
 } 

 else { 

     Ub2 =(double) StrToFloat(Form1->Edit4->Text); 
     if (Ub2<=0 || Ub2>=1){ 

     U22=false; 

     Edit10->Color=clRed; 

     U222=true; 
     U2=false; 

     U2222=false;  Button8->Visible=true; 

     } 
     else 

     { 

     U22=false; 

     U222=false; 
     U2=true; 

     Edit10->Color=clGreen; Button8->Visible=false; 

       if(Lb2>=Ub2){ 
    Edit10->Color=clRed; Button8->Visible=true; 

    U2=false; 

     U22=false; 
     Edit10->Color=clRed; 

     U222=false; 

     U2222=true; 

   } 
   else { 

   Edit10->Color=clGreen;  Button8->Visible=false; 

    U22=false; 
     U222=false; 

     U2=true; 

     Edit10->Color=clGreen; 
      U2222=false; 

   } 

     } 

   } 
    if (L1 && L2 && L3 && U1 && U2 && U3){ 

   Button1->Enabled=true; 



 227 

   } 

   else{ 
     Button1->Enabled=false; 

   } 

} 
//------------------------------------------------------------------------ 

void __fastcall TForm1::Button10Click(TObject *Sender) 

{ 

 if (L33){ 
   ShowMessage("Error!!!!"); 

   } 

   else if (L333) 
   { 

   ShowMessage("Error!!!"); 

   } 

} 
//------------------------------------------------------------------------

void __fastcall TForm1::EError(TObject *Sender) 

{ 
  if (U33){ 

   ShowMessage("Error!!! "); 

   } 
   else if (U333) 

   { 

   ShowMessage("Error!!!)"); 

   } 
    else if (U3333){ 

   ShowMessage("Error!!! "); 

   } 
} 

//------------------------------------------------------------------------

void __fastcall TForm1::Edit5Exit(TObject *Sender) 
{     Button1->Enabled=false; 

if(!TryStrToFloat(Edit5->Text,Lb3)){ 

  Edit11->Color=clRed; 

  L33=true; 
     L3=false;   Button10->Visible=true; 

 } 
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 else { 

     Lb3 =(double) StrToFloat(Form1->Edit5->Text); 
     if (Lb3<=0 || Lb3>=1){ 

     L33=false; 

     Edit11->Color=clRed;  Button10->Visible=true; 
     L333=true; 

     L3=false; 

     } 

     else 
     { 

     L33=false; 

     L333=false; 
     L3=true; 

     Edit11->Color=clGreen;Button10->Visible=false; 

       Edit2->Enabled=true;        if(Lb3>=Ub3){ 

    Edit12->Color=clRed;    Button9->Visible=true; 
    U3=false; 

     U33=false; 

     Edit12->Color=clRed; 
     U333=false; 

     U3333=true; 

   } 
   else { 

   Edit12->Color=clGreen;      Button9->Visible=false; 

    U33=false; 

     U333=false; 
     U3=true; 

     Edit12->Color=clGreen; 

     U3333=false; 
   } 

     } 

   } 
    if (L1 && L2 && L3 && U1 && U2 && U3){ 

   Button1->Enabled=true; 

   } 

   else{ 
     Button1->Enabled=false; 

   } 
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} 

//------------------------------------------------------------------------
void __fastcall TForm1::Edit6Exit(TObject *Sender) 

{   Button1->Enabled=false; 

if(!TryStrToFloat(Edit6->Text,Ub3)){ 
 // ShowMessage("Error!!! "); 

  Edit12->Color=clRed; 

  U33=true; 

  //Lb1= double(0.01); 
 // Form1->Edit1->Text=Lb1; 

       U3=false; U3333=false;   Button9->Visible=true; 

 } 
 else { 

     Ub3 =(double) StrToFloat(Form1->Edit6->Text); 

     if (Ub3<=0 || Ub3>=1){ 

     U33=false; 
     Edit12->Color=clRed;    Button9->Visible=true; 

     U333=true; 

     U3=false;  U3333=false; 
     } 

     else 

     {  U3333=false; 
     U33=false; 

     U333=false; 

     U3=true; 

     Edit12->Color=clGreen;  Button9->Visible=false; 
       if(Lb3>=Ub3){ 

    Edit12->Color=clRed;    Button9->Visible=true; 

    U3=false; 
     U33=false; 

     Edit12->Color=clRed; 

     U333=false; 
     U3333=true; 

   } 

   else { 

   Edit12->Color=clGreen;      Button9->Visible=false; 
    U33=false; 

     U333=false; 
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     U3=true; 

     Edit12->Color=clGreen; 
     U3333=false; 

   } 

     } 
   } 

    if (L1 && L2 && L3 && U1 && U2 && U3){ 

   Button1->Enabled=true; 

   } 
   else{ 

     Button1->Enabled=false; 

   } 
} 

//------------------------------------------------------------------------

void __fastcall TForm1::ErError2(TObject *Sender) 

{ 
if(Error1){ 

 ShowMessage("Немає точок перетину"); 

} else if (Error2){ 
        ShowMessage("Точок перетину не достатньо для 

побудови підобласті (1 або 2 точки)"); 

} 
} 

//------------------------------------------------------------------------

void __fastcall TForm1::Edit6Change(TObject *Sender) 

{ 
Button4->Enabled=false;         

} 

//------------------------------------------------------------------------
void __fastcall TForm1::Edit5Change(TObject *Sender) 

{ 

Button4->Enabled=false;         
} 

//------------------------------------------------------------------------ 

void __fastcall TForm1::Edit4Change(TObject *Sender) 

{ 
Button4->Enabled=false;         

} 
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//------------------------------------------------------------------------

void __fastcall TForm1::Edit3Change(TObject *Sender) 
{ 

Button4->Enabled=false;         

} 
//------------------------------------------------------------------------

void __fastcall TForm1::Edit2Change(TObject *Sender) 

{ 

Button4->Enabled=false;         
} 

//------------------------------------------------------------------------

void __fastcall TForm1::Edit1Change(TObject *Sender) 
{ 

Button4->Enabled=false;         

} 

//------------------------------------------------------------------------
void __fastcall TForm1::Button12Click(TObject *Sender) 

{ 

Form1->PageControl1->ActivePage=TabSheet3;         
} 

//------------------------------------------------------------------------

void __fastcall TForm1::Button15Click(TObject *Sender) 
{ Button1Click(Form1); indexPoints=0; 

   Button4Click(Form1);     Button5->Enabled=false; 

      Edit14->Color=clRed; 

} 
//------------------------------------------------------------------------ 

void __fastcall TForm1::Button13Click(TObject *Sender) 

{ 
Form1->PageControl1->ActivePage=TabSheet1;  

} 

//------------------------------------------------------------------------ 
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ADDITION 2 

PROGRAM LISTING 

Basic procedures and functions for constructing an 

experiment plan for a four-component mixture 
 
procedure convert(a, b: vector1; var x1, x2, x3, x4: vector); 
var 

  i, j, g, n: Integer; 

  k1, k2: mas; 
begin 

  k1[1, 1] := a[1]; 

  k1[1, 2] := a[2]; 
  k1[1, 3] := a[3]; 

  k1[1, 4] := 1 - (k1[1, 2] + k1[1, 1] + k1[1, 3]); 

  k1[2, 1] := b[1]; 

  k1[2, 2] := a[2]; 
  k1[2, 3] := a[3]; 

  k1[2, 4] := 1 - (k1[2, 2] + k1[2, 1] + k1[2, 3]); 

  k1[3, 1] := a[1]; 
  k1[3, 2] := b[2]; 

  k1[3, 3] := a[3]; 

  k1[3, 4] := 1 - (k1[3, 2] + k1[3, 1] + k1[3, 3]); 
  k1[4, 1] := b[1]; 

  k1[4, 2] := b[2]; 

  k1[4, 3] := a[3]; 

  k1[4, 4] := 1 - (k1[4, 2] + k1[4, 1] + k1[4, 3]); 
  k1[5, 1] := a[1]; 

  k1[5, 2] := a[2]; 

  k1[5, 3] := b[3]; 
  k1[5, 4] := 1 - (k1[5, 2] + k1[5, 1] + k1[5, 3]); 

  k1[6, 1] := b[1]; 

  k1[6, 2] := a[2]; 

  k1[6, 3] := b[3]; 
  k1[6, 4] := 1 - (k1[6, 2] + k1[6, 1] + k1[6, 3]); 

  k1[7, 1] := a[1]; 

  k1[7, 2] := b[2]; 
  k1[7, 3] := b[3]; 

  k1[7, 4] := 1 - (k1[7, 2] + k1[7, 1] + k1[7, 3]); 
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  k1[8, 1] := b[1]; 

  k1[8, 2] := b[2]; 
  k1[8, 3] := b[3]; 

  k1[8, 4] := 1 - (k1[8, 2] + k1[8, 1] + k1[8, 3]); 

  k1[9, 1] := a[1]; 
  k1[9, 2] := a[2]; 

  k1[9, 4] := a[4]; 

  k1[9, 3] := 1 - (k1[9, 2] + k1[9, 1] + k1[9, 4]); 

  k1[10, 1] := b[1]; 
  k1[10, 2] := a[2]; 

  k1[10, 4] := a[4]; 

  k1[10, 3] := 1 - (k1[10, 2] + k1[10, 1] + k1[10, 4]); 
  k1[11, 1] := a[1]; 

  k1[11, 2] := b[2]; 

  k1[11, 4] := a[4]; 

  k1[11, 3] := 1 - (k1[11, 2] + k1[11, 1] + k1[11, 4]); 
  k1[12, 1] := b[1]; 

  k1[12, 2] := b[2]; 

  k1[12, 4] := a[4]; 
  k1[12, 3] := 1 - (k1[12, 2] + k1[12, 1] + k1[12, 4]); 

  k1[13, 1] := a[1]; 

  k1[13, 2] := a[2]; 
  k1[13, 4] := b[4]; 

  k1[13, 3] := 1 - (k1[13, 2] + k1[13, 1] + k1[13, 4]); 

  k1[14, 1] := b[1]; 

  k1[14, 2] := a[2]; 
  k1[14, 4] := b[4]; 

  k1[14, 3] := 1 - (k1[14, 2] + k1[14, 1] + k1[14, 4]); 

  k1[15, 1] := a[1]; 
  k1[15, 2] := b[2]; 

  k1[15, 4] := b[4]; 

  k1[15, 3] := 1 - (k1[15, 2] + k1[15, 1] + k1[15, 4]); 
  k1[16, 1] := b[1]; 

  k1[16, 2] := b[2]; 

  k1[16, 4] := b[4]; 

  k1[16, 3] := 1 - (k1[16, 2] + k1[16, 1] + k1[16, 4]); 
  k1[17, 1] := a[1]; 

  k1[17, 3] := a[3]; 
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  k1[17, 4] := a[4]; 

  k1[17, 2] := 1 - (k1[17, 4] + k1[17, 1] + k1[17, 3]); 
  k1[18, 1] := b[1]; 

  k1[18, 3] := a[3]; 

  k1[18, 4] := a[4]; 
  k1[18, 2] := 1 - (k1[18, 4] + k1[18, 1] + k1[18, 3]); 

  k1[19, 1] := a[1]; 

  k1[19, 3] := b[3]; 

  k1[19, 4] := a[4]; 
  k1[19, 2] := 1 - (k1[19, 4] + k1[19, 1] + k1[19, 3]); 

  k1[20, 1] := b[1]; 

  k1[20, 3] := b[3]; 
  k1[20, 4] := a[4]; 

  k1[20, 2] := 1 - (k1[20, 4] + k1[20, 1] + k1[20, 3]); 

  k1[21, 1] := a[1]; 

  k1[21, 3] := a[3]; 
  k1[21, 4] := b[4]; 

  k1[21, 2] := 1 - (k1[21, 4] + k1[21, 1] + k1[21, 3]); 

  k1[22, 1] := b[1]; 
  k1[22, 3] := a[3]; 

  k1[22, 4] := b[4]; 

  k1[22, 2] := 1 - (k1[22, 4] + k1[22, 1] + k1[22, 3]); 
  k1[23, 1] := a[1]; 

  k1[23, 3] := b[3]; 

  k1[23, 4] := b[4]; 

  k1[23, 2] := 1 - (k1[23, 4] + k1[23, 1] + k1[23, 3]); 
  k1[24, 1] := b[1]; 

  k1[24, 3] := b[3]; 

  k1[24, 4] := b[4]; 
  k1[24, 2] := 1 - (k1[24, 4] + k1[24, 1] + k1[24, 3]); 

  k1[25, 2] := a[2]; 

  k1[25, 3] := a[3]; 
  k1[25, 4] := a[4]; 

  k1[25, 1] := 1 - (k1[25, 2] + k1[25, 4] + k1[25, 3]); 

  k1[26, 2] := b[2]; 

  k1[26, 3] := a[3]; 
  k1[26, 4] := a[4]; 

  k1[26, 1] := 1 - (k1[26, 2] + k1[26, 4] + k1[26, 3]); 
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  k1[27, 2] := a[2]; 

  k1[27, 3] := b[3]; 
  k1[27, 4] := a[4]; 

  k1[27, 1] := 1 - (k1[27, 2] + k1[27, 4] + k1[27, 3]); 

  k1[28, 2] := b[2]; 
  k1[28, 3] := b[3]; 

  k1[28, 4] := a[4]; 

  k1[28, 1] := 1 - (k1[28, 2] + k1[28, 4] + k1[28, 3]); 

  k1[29, 2] := a[2]; 
  k1[29, 3] := a[3]; 

  k1[29, 4] := b[4]; 

  k1[29, 1] := 1 - (k1[29, 2] + k1[29, 4] + k1[29, 3]); 
  k1[30, 2] := b[2]; 

  k1[30, 3] := a[3]; 

  k1[30, 4] := b[4]; 

  k1[30, 1] := 1 - (k1[30, 2] + k1[30, 4] + k1[30, 3]); 
  k1[31, 2] := a[2]; 

  k1[31, 3] := b[3]; 

  k1[31, 4] := b[4]; 
  k1[31, 1] := 1 - (k1[31, 2] + k1[31, 4] + k1[31, 3]); 

  k1[32, 2] := b[2]; 

  k1[32, 3] := b[3]; 
  k1[32, 4] := b[4]; 

  k1[32, 1] := 1 - (k1[32, 2] + k1[32, 4] + k1[32, 3]); 

  j := 0; 

  for i := 1 to 32 do 
  begin 

    if (k1[i, 1] >= a[1]) and (k1[i, 1] <= b[1]) and (k1[i, 2] >= 

a[2]) and (k1[i, 2] <= b[2]) and (k1[i, 3] >= a[3]) and (k1[i, 3] <= 
b[3]) and (k1[i, 4] >= a[4]) and (k1[i, 4] <= b[4]) then 

    begin 

      j := j + 1; 
      k2[j, 1] := k1[i, 1]; 

      k2[j, 2] := k1[i, 2]; 

      k2[j, 3] := k1[i, 3]; 

      k2[j, 4] := k1[i, 4]; 
    end; 

    for n := j + 1 to 32 do 
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    begin 

      k2[n, 1] := 0; 
      k2[n, 2] := 0; 

      k2[n, 3] := 0; 

      k2[n, 4] := 0; 
    end; 

  end; 

  for g := 1 to 32 do 

  begin 
    x1[g] := k2[g, 1]; 

    x2[g] := k2[g, 2]; 

    x3[g] := k2[g, 3]; 
    x4[g] := k2[g, 4]; 

  end; 

end; 

procedure grani(x1, x2, x3, x4: vector; var ox1, ox2, ox3, 
ox4: vector); 

type 

  PMyList = ^AList; 
  AList = record 

    R1: real; 

    R2: real; 
    R3: real; 

    R4: real; 

  end; 

var 
  MyList: TList; 

  ARecord: PMyList; 

  i, i1, i2, i3, j, k, prov_sovp, count: Integer; 
  sumx1, sumx2, sumx3, sumx4, serx1, serx2, serx3, serx4: 

Real; 

begin 
  MyList := TList.create; 

  sumx1 := 0; 

  serx1 := 0; 

  count := 0; 
  sumx2 := 0; 

  serx2 := 0; 
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  sumx3 := 0; 

  serx3 := 0; 
  sumx4 := 0; 

  serx4 := 0; 

  for i := 1 to 32 do 
  begin 

    prov_sovp := 0; 

    if i <> 1 then 

    begin 
      for k := 1 to i - 1 do 

      begin 

        if (x1[i] = x1[k]) then 
          prov_sovp := 1; 

      end; 

    end; 

    if ((i = 1) or (prov_sovp = 0)) then 
    begin 

      if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and 

(x4[i] <> 0)) then 
      begin  

        for j := i to 32 do 

        begin 
          if (x1[i] = x1[j + 1]) then 

          begin 

            sumx1 := sumx1 + x1[j + 1]; 

            sumx2 := sumx2 + x2[j + 1]; 
            sumx3 := sumx3 + x3[j + 1]; 

            sumx4 := sumx4 + x4[j + 1]; 

            count := count + 1; 
          end; 

        end; 

        if (count <> 0) then 
        begin 

          sumx1 := sumx1 + x1[i]; 

          sumx2 := sumx2 + x2[i]; 

          sumx3 := sumx3 + x3[i]; 
          sumx4 := sumx4 + x4[i]; 

          serx1 := sumx1 / (count + 1); 
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          ox1[i] := serx1; 

          serx2 := sumx2 / (count + 1); 
          ox2[i] := serx2; 

          serx3 := sumx3 / (count + 1); 

          ox3[i] := serx3; 
          serx4 := sumx4 / (count + 1); 

          ox4[i] := serx4; 

          New(ARecord); 

          ARecord^.R1 := ox1[i]; 
          ARecord^.R2 := ox2[i]; 

          ARecord^.R3 := ox3[i]; 

          ARecord^.R4 := ox4[i]; 
          MyList.Add(ARecord); 

        end; 

        sumx1 := 0; 

        serx1 := 0; 
        count := 0; 

        sumx2 := 0; 

        serx2 := 0; 
        sumx3 := 0; 

        serx3 := 0; 

        sumx4 := 0; 
        serx4 := 0; 

      end; 

    end; 

  end; 
  for i1 := 1 to 32 do 

  begin 

    prov_sovp := 0; 
    if i1 <> 1 then 

    begin 

      for k := 1 to i1 - 1 do 
      begin 

        if (x2[i1] = x2[k]) then 

          prov_sovp := 1; 

      end; 
    end; 

    if ((i1 = 1) or (prov_sovp = 0)) then 
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    begin 

 
      if ((x1[i1] <> 0) and (x2[i1] <> 0) and (x3[i1] <> 0) and 

(x4[i1] <> 0)) then 

      begin 
        for j := i1 to 32 do 

        begin 

          if (x2[i1] = x2[j + 1]) then 

          begin 
            sumx1 := sumx1 + x1[j + 1]; 

            sumx2 := sumx2 + x2[j + 1]; 

            sumx3 := sumx3 + x3[j + 1]; 
            sumx4 := sumx4 + x4[j + 1]; 

            count := count + 1; 

          end; 

        end; 
        if (count <> 0) then 

        begin 

          sumx1 := sumx1 + x1[i1]; 
          sumx2 := sumx2 + x2[i1]; 

          sumx3 := sumx3 + x3[i1]; 

          sumx4 := sumx4 + x4[i1]; 
          serx1 := sumx1 / (count + 1); 

          ox1[i1] := serx1; 

          serx2 := sumx2 / (count + 1); 

          ox2[i1] := serx2; 
          serx3 := sumx3 / (count + 1); 

          ox3[i1] := serx3; 

          serx4 := sumx4 / (count + 1); 
          ox4[i1] := serx4; 

          New(ARecord); 

          ARecord^.R1 := ox1[i1]; 
          ARecord^.R2 := ox2[i1]; 

          ARecord^.R3 := ox3[i1]; 

          ARecord^.R4 := ox4[i1]; 

          MyList.Add(ARecord); 
        end; 

        sumx1 := 0; 



 240 

        serx1 := 0; 

        count := 0; 
        sumx2 := 0; 

        serx2 := 0; 

        sumx3 := 0; 
        serx3 := 0; 

        sumx4 := 0; 

        serx4 := 0; 

      end; 
    end; 

  end; 

  for i2 := 1 to 32 do 
  begin 

    prov_sovp := 0; 

    if i2 <> 1 then 

    begin 
      for k := 1 to i2 - 1 do 

      begin 

        if (x3[i2] = x3[k]) then 
          prov_sovp := 1; 

      end; 

    end; 
    if ((i2 = 1) or (prov_sovp = 0)) then 

    begin 

      if ((x1[i2] <> 0) and (x2[i2] <> 0) and (x3[i2] <> 0) and 

(x4[i2] <> 0)) then 
      begin 

        for j := i2 to 32 do 

        begin 
          if (x3[i2] = x3[j + 1]) then 

          begin 

            sumx1 := sumx1 + x1[j + 1]; 
            sumx2 := sumx2 + x2[j + 1]; 

            sumx3 := sumx3 + x3[j + 1]; 

            sumx4 := sumx4 + x4[j + 1]; 

            count := count + 1; 
          end; 

        end; 
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        if (count <> 0) then 

        begin 
          sumx1 := sumx1 + x1[i2]; 

          sumx2 := sumx2 + x2[i2]; 

          sumx3 := sumx3 + x3[i2]; 
          sumx4 := sumx4 + x4[i2]; 

          serx1 := sumx1 / (count + 1); 

          ox1[i2] := serx1; 

          serx2 := sumx2 / (count + 1); 
          ox2[i2] := serx2; 

          serx3 := sumx3 / (count + 1); 

          ox3[i2] := serx3; 
          serx4 := sumx4 / (count + 1); 

          ox4[i2] := serx4; 

          New(ARecord); 

          ARecord^.R1 := ox1[i2]; 
          ARecord^.R2 := ox2[i2]; 

          ARecord^.R3 := ox3[i2]; 

          ARecord^.R4 := ox4[i2]; 
          MyList.Add(ARecord); 

        end; 

        sumx1 := 0; 
        serx1 := 0; 

        count := 0; 

        sumx2 := 0; 

        serx2 := 0; 
        sumx3 := 0; 

        serx3 := 0; 

        sumx4 := 0; 
        serx4 := 0; 

      end; 

    end; 
  end; 

  for i3 := 1 to 32 do 

  begin 

    prov_sovp := 0; 
    if i3 <> 1 then 

    begin 
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      for k := 1 to i3 - 1 do 

      begin 
        if (x4[i3] = x4[k]) then 

          prov_sovp := 1; 

      end; 
    end; 

    if ((i3 = 1) or (prov_sovp = 0)) then 

    begin 

      if ((x1[i3] <> 0) and (x2[i3] <> 0) and (x3[i3] <> 0) and 
(x4[i3] <> 0)) then 

      begin 

        for j := i3 to 32 do 
        begin 

          if (x4[i3] = x4[j + 1]) then 

          begin 

            sumx1 := sumx1 + x1[j + 1]; 
            sumx2 := sumx2 + x2[j + 1]; 

            sumx3 := sumx3 + x3[j + 1]; 

            sumx4 := sumx4 + x4[j + 1]; 
            count := count + 1; 

          end; 

        end; 
        if (count <> 0) then 

        begin 

          sumx1 := sumx1 + x1[i3]; 

          sumx2 := sumx2 + x2[i3]; 
          sumx3 := sumx3 + x3[i3]; 

          sumx4 := sumx4 + x4[i3]; 

          serx1 := sumx1 / (count + 1); 
          ox1[i3] := serx1; 

          serx2 := sumx2 / (count + 1); 

          ox2[i3] := serx2; 
          serx3 := sumx3 / (count + 1); 

          ox3[i3] := serx3; 

          serx4 := sumx4 / (count + 1); 

          ox4[i3] := serx4; 
          New(ARecord); 

          ARecord^.R1 := ox1[i3]; 
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          ARecord^.R2 := ox2[i3]; 

          ARecord^.R3 := ox3[i3]; 
          ARecord^.R4 := ox4[i3]; 

          MyList.Add(ARecord); 

        end; 
        sumx1 := 0; 

        serx1 := 0; 

        count := 0; 

        sumx2 := 0; 
        serx2 := 0; 

        sumx3 := 0; 

        serx3 := 0; 
        sumx4 := 0; 

        serx4 := 0; 

      end; 

    end; 
  end; 

  for j := 0 to (MyList.Count - 1) do 

  begin 
    ARecord := MyList.Items[j]; 

    ox1[j+1]:= ARecord^.R1; 

     ox2[j+1]:= ARecord^.R2; 
      ox3[j+1]:= ARecord^.R3; 

       ox4[j+1]:= ARecord^.R4; 

  end; 

end; 
procedure rebra(x1, x2, x3, x4: vector; var dx1, dx2, dx3, 

dx4: vector); 

type 
  PMyList = ^AList; 

  AList = record 

    R1: real; 
    R2: real; 

    R3: real; 

    R4: real; 

  end; 
var 

  MyList: TList; 
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  ARecord: PMyList; 

  i, i1, i2, i3, j, count: Integer; 
  sumx1, sumx2, sumx3, sumx4, serx1, serx2, serx3, serx4: 

Real; 

begin 
  MyList := TList.create; 

  sumx1 := 0; 

  serx1 := 0; 

  count := 0; 
  sumx2 := 0; 

  serx2 := 0; 

  sumx3 := 0; 
  serx3 := 0; 

  sumx4 := 0; 

  serx4 := 0; 

  for i := 1 to 32 do 
  begin 

      if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and 

(x4[i] <> 0)) then 
      begin 

        for j := i to 32 do 

        begin 
          if (x1[i] = x1[j + 1])then  begin 

           if (x2[i]=x2[j+1]) then 

            begin 

            sumx1 := sumx1 + x1[j + 1]; 
            sumx2 := sumx2 + x2[j + 1]; 

            sumx3 := sumx3 + x3[j + 1]; 

            sumx4 := sumx4 + x4[j + 1]; 
            count := count + 1; 

            end; 

           if (x3[i]=x3[j+1]) then 
            begin 

            sumx1 := sumx1 + x1[j + 1]; 

            sumx2 := sumx2 + x2[j + 1]; 

            sumx3 := sumx3 + x3[j + 1]; 
            sumx4 := sumx4 + x4[j + 1]; 

            count := count + 1; 
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            end; 

           if (x4[i]=x4[j+1]) then 
            begin 

            sumx1 := sumx1 + x1[j + 1]; 

            sumx2 := sumx2 + x2[j + 1]; 
            sumx3 := sumx3 + x3[j + 1]; 

            sumx4 := sumx4 + x4[j + 1]; 

            count := count + 1; 

            end; 
          end; 

        if (count <> 0) then 

        begin 
          sumx1 := sumx1 + x1[i]; 

          sumx2 := sumx2 + x2[i]; 

          sumx3 := sumx3 + x3[i]; 

          sumx4 := sumx4 + x4[i]; 
          serx1 := sumx1 / (count + 1); 

          dx1[i] := serx1; 

          serx2 := sumx2 / (count + 1); 
          dx2[i] := serx2; 

          serx3 := sumx3 / (count + 1); 

          dx3[i] := serx3; 
          serx4 := sumx4 / (count + 1); 

          dx4[i] := serx4; 

          New(ARecord); 

          ARecord^.R1 := dx1[i]; 
          ARecord^.R2 := dx2[i]; 

          ARecord^.R3 := dx3[i]; 

          ARecord^.R4 := dx4[i]; 
          MyList.Add(ARecord); 

        end; 

        sumx1 := 0; 
        serx1 := 0; 

        count := 0; 

        sumx2 := 0; 

        serx2 := 0; 
        sumx3 := 0; 

        serx3 := 0; 
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        sumx4 := 0; 

        serx4 := 0; 
      end; 

      end; 

  end; 
  for i1 := 1 to 32 do 

  begin 

      if ((x1[i1] <> 0) and (x2[i1] <> 0) and (x3[i1] <> 0) and 

(x4[i1] <> 0)) then 
      begin 

        for j := i1 to 32 do 

        begin 
          if (x2[i1] = x2[j + 1]) then 

          begin 

            if (x3[i1]=x3[j+1])then 

            begin 
            sumx1 := sumx1 + x1[j + 1]; 

            sumx2 := sumx2 + x2[j + 1]; 

            sumx3 := sumx3 + x3[j + 1]; 
            sumx4 := sumx4 + x4[j + 1]; 

            count := count + 1; 

          end; 
            if (x4[i1]=x4[j+1])then 

            begin 

            sumx1 := sumx1 + x1[j + 1]; 

            sumx2 := sumx2 + x2[j + 1]; 
            sumx3 := sumx3 + x3[j + 1]; 

            sumx4 := sumx4 + x4[j + 1]; 

            count := count + 1; 
          end; 

        end; 

        if (count <> 0) then 
        begin 

          sumx1 := sumx1 + x1[i1]; 

          sumx2 := sumx2 + x2[i1]; 

          sumx3 := sumx3 + x3[i1]; 
          sumx4 := sumx4 + x4[i1]; 

          serx1 := sumx1 / (count + 1); 
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          dx1[i1] := serx1; 

          serx2 := sumx2 / (count + 1); 
          dx2[i1] := serx2; 

          serx3 := sumx3 / (count + 1); 

          dx3[i1] := serx3; 
          serx4 := sumx4 / (count + 1); 

          dx4[i1] := serx4; 

          New(ARecord); 

          ARecord^.R1 := dx1[i1]; 
          ARecord^.R2 := dx2[i1]; 

          ARecord^.R3 := dx3[i1]; 

          ARecord^.R4 := dx4[i1]; 
          MyList.Add(ARecord); 

        end; 

        sumx1 := 0; 

        serx1 := 0; 
        count := 0; 

        sumx2 := 0; 

        serx2 := 0; 
        sumx3 := 0; 

        serx3 := 0; 

        sumx4 := 0; 
        serx4 := 0; 

      end; 

    end; 

  end; 
  for i2 := 1 to 32 do 

  begin 

      if ((x1[i2] <> 0) and (x2[i2] <> 0) and (x3[i2] <> 0) and 
(x4[i2] <> 0)) then 

      begin 

        for j := i2 to 32 do 
        begin 

          if (x3[i2] = x3[j + 1]) then 

          begin 

           if (x4[i2]=x4[j+1]) then 
           begin 

            sumx1:= sumx1 + x1[j + 1]; 
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            sumx2:= sumx2 + x2[j + 1]; 

            sumx3:= sumx3 + x3[j + 1]; 
            sumx4:= sumx4 + x4[j + 1]; 

            count:= count + 1; 

          end; 
        end; 

        if (count <> 0) then 

        begin 

          sumx1 := sumx1 + x1[i2]; 
          sumx2 := sumx2 + x2[i2]; 

          sumx3 := sumx3 + x3[i2]; 

          sumx4 := sumx4 + x4[i2]; 
          serx1 := sumx1 / (count + 1); 

          dx1[i2] := serx1; 

          serx2 := sumx2 / (count + 1); 

          dx2[i2] := serx2; 
          serx3 := sumx3 / (count + 1); 

          dx3[i2] := serx3; 

          serx4 := sumx4 / (count + 1); 
          dx4[i2] := serx4; 

          New(ARecord); 

          ARecord^.R1 := dx1[i2]; 
          ARecord^.R2 := dx2[i2]; 

          ARecord^.R3 := dx3[i2]; 

          ARecord^.R4 := dx4[i2]; 

          MyList.Add(ARecord); 
        end; 

        sumx1 := 0; 

        serx1 := 0; 
        count := 0; 

        sumx2 := 0; 

        serx2 := 0; 
        sumx3 := 0; 

        serx3 := 0; 

        sumx4 := 0; 

        serx4 := 0; 
      end; 

    end; 
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  end; 

  for j := 0 to (MyList.Count - 1) do 
  begin 

    ARecord := MyList.Items[j]; 

     dx1[j+1]:= ARecord^.R1; 
     dx2[j+1]:= ARecord^.R2; 

      dx3[j+1]:= ARecord^.R3; 

       dx4[j+1]:= ARecord^.R4; 

  end; 
end; 

procedure centr(x1, x2, x3, x4: vector; var cx1, cx2, cx3, 

cx4:real); 
var 

  i:Integer; 

  count,sum1,sum2,sum3,sum4:Real; 

begin 
  count:=0; sum1:=0; sum2:=0; sum3:=0; sum4:=0; 

  for i:=1 to 32 do begin 

    if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i] 
<> 0)) then 

      begin 

       count:=count+1; 
        sum1:=sum1+x1[i]; 

        sum2:=sum2+x2[i]; 

        sum3:=sum3+x3[i]; 

        sum4:=sum4+x4[i]; 
      end; 

    if count <> 0 then 

      begin 
       cx1:=sum1/count; 

       cx2:=sum2/count; 

       cx3:=sum3/count; 
       cx4:=sum4/count; 

      end; 

   end; 

end; 
procedure vids_centr (x1,x2,x3,x4:vector; 

cx1,cx2,cx3,cx4:Real; a,b:vector1; var dc:vector); 
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 var i,n:Integer; 

 begin 
   for i:=1 to 32 do 

   begin 

    if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i] 
<> 0)) then 

      begin 

        dc[i]:=Sqrt(Sqr((x1[i]-cx1)/(b[1]-a[1]))+Sqr((x2[i]-

cx2)/(b[2]-a[2]))+Sqr((x3[i]-cx3)/(b[3]-a[3]))+Sqr((x4[i]-cx4)/(b[4]-
a[4]))); 

      end; 

     for n:=i+1 to 32 do begin 
     dc[n]:=0; 

     end; 

   end; 

 end; 
 procedure convert2 (x1, x2, x3, x4, dcv, dx1, dx2, dx3, dx4, 

dcr, ox1, ox2, ox3, ox4, dcg:vector; var tx1, tx2, tx3, tx4, dc:vector); 

  type 
  PMyList = ^AList; 

  AList = record 

    R1: real;     R2: real;    R3: real; R4: real;  R5: Real; 
  end; 

var i,j:integer; 

  MyList: TList; 

  ARecord: PMyList; 
 begin 

  MyList := TList.create; 

  for i:=1 to 32 do 
  begin 

    if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i] 

<> 0) and (dcv[i]<>0)) then 
    begin 

          New(ARecord); 

          ARecord^.R1 := x1[i]; 

          ARecord^.R2 := x2[i]; 
          ARecord^.R3 := x3[i]; 

          ARecord^.R4 := x4[i]; 



 251 

          ARecord^.R5 := dcv[i]; 

          MyList.Add(ARecord); 
    end; 

    if ((dx1[i] <> 0) and (dx2[i] <> 0) and (dx3[i] <> 0) and 

(dx4[i] <> 0)and (dcr[i]<>0)) then 
    begin 

          New(ARecord); 

          ARecord^.R1 := dx1[i]; 

          ARecord^.R2 := dx2[i]; 
          ARecord^.R3 := dx3[i]; 

          ARecord^.R4 := dx4[i]; 

          ARecord^.R5 := dcr[i]; 
          MyList.Add(ARecord); 

    end; 

    if ((ox1[i] <> 0) and (ox2[i] <> 0) and (ox3[i] <> 0) and 

(ox4[i] <> 0)and (dcr[i]<>0)) then 
    begin 

          New(ARecord); 

          ARecord^.R1 := ox1[i]; 
          ARecord^.R2 := ox2[i]; 

          ARecord^.R3 := ox3[i]; 

          ARecord^.R4 := ox4[i]; 
          ARecord^.R5 := dcg[i]; 

          MyList.Add(ARecord); 

    end; 

  end; 
     for j := 0 to (MyList.Count-1) do 

  begin 

    ARecord := MyList.Items[j]; 
   tx1[j+1]:= ARecord^.R1; 

     tx2[j+1]:= ARecord^.R2; 

      tx3[j+1]:= ARecord^.R3; 
       tx4[j+1]:= ARecord^.R4; 

        dc[j+1]:= ARecord^.R5; 

  end; 

 end; 
  procedure norm (dc:vector; var dn:real); 

  var i,count:Integer; 
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    sum,dn1,dn2:Real; 

  begin 
    count:=0; 

    for i:=1 to 32 do 

    begin 
     if (dc[i]<>0) then 

     begin 

      count:=count+1; 

      sum:=sum+dc[i]; 
     end; 

    end; 

    dn1:=sum/count; 
    dn2:=sqrt(2*dn1); 

    dn:=(dn1+dn2)/2; 

  end; 

 procedure max_d (x1,x2,x3,x4,dc:vector; var max:integer); 
  var i:integer; 

  begin 

   for i:=1 to 32 do 
    begin 

      if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and 

(x4[i] <> 0) and (dc[i]<>0)) then 
      begin 

        if dc[i] > dc[max] then 

      max := i; 

      end; 
    end; 

    end; 

  procedure vibir_tochok (tx1,tx2,tx3,tx4,dc:vector; dn:Real; 
var px1,px2,px3,px4:vector); 

   type 

  PMyList = ^AList; 
  AList = record 

    R1: real;     R2: real;    R3: real;     R4: real; 

  end; 

  var k1,i1,k,j,i,max:Integer; 
    dc1,dc2:vector; 

    dcc,dc11,dc22,sx1,sx2,sx3,sx4:Real; 
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  MyList: TList; 

  ARecord: PMyList; 
  begin 

      MyList := TList.create; 

     j:=1; 
      max_d(tx1,tx2,tx3,tx4,dc,max); 

      px1[j]:=tx1[max]; px2[j]:=tx2[max]; px3[j]:=tx3[max]; 

px4[j]:=tx4[max]; 

      tx1[max]:=0; tx2[max]:=0; tx3[max]:=0;  tx4[max]:=0; 
dc[max]:=0; 

      max_d(tx1,tx2,tx3,tx4,dc,max); 

      px1[j+1]:=tx1[max]; px2[j+1]:=tx2[max]; 
px3[j+1]:=tx3[max]; px4[j+1]:=tx4[max]; 

      tx1[max]:=0; tx2[max]:=0; tx3[max]:=0;  tx4[max]:=0; 

dc[max]:=0; 

     for i:=1 to 32 do begin 
      if ((tx1[i] <> 0) and (tx2[i] <> 0) and (tx3[i] <> 0) and 

(tx4[i] <> 0) and (dc[i]<>0)) then 

      begin 
      vids_centr 

(tx1,tx2,tx3,tx4,px1[1],px2[1],px3[1],px4[1],a,b,dc1); 

      vids_centr 
(tx1,tx2,tx3,tx4,px1[2],px2[2],px3[2],px4[2],a,b,dc2); 

      end; 

     end; 

  for k1:=31 downto 1 do 
  for k := 1 to k1 do 

    begin 

      if (dc[k]<dc[k+1]) then 
        begin 

          sx1:=tx1[k+1]; sx2:=tx2[k+1]; sx3:=tx3[k+1]; 

sx4:=tx4[k+1]; dc11:=dc1[k+1]; dc22:=dc2[k+1];  dcc:=dc[k+1]; 
          tx1[k+1]:=tx1[k]; tx2[k+1]:=tx2[k]; tx3[k+1]:=tx3[k]; 

tx4[k+1]:= tx4[k]; dc1[k+1]:=dc1[k]; dc2[k+1]:=dc2[k]; 

dc[k+1]:=dc[k]; 

          tx1[k]:=sx1; tx2[k]:=sx2; tx3[k]:=sx3; tx4[k]:=sx4; 
dc1[k]:=dc11; dc2[k]:=dc22;  dc[k]:=dcc; 

        end; 
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    end; 

    for i1:=1 to 32 do begin 
      if ((dc1[i1]>1.0019) and (dc2[i1]>1.0019)) then begin 

      New(ARecord); 

          ARecord^.R1 := tx1[i1]; 
          ARecord^.R2 := tx2[i1]; 

          ARecord^.R3 := tx3[i1]; 

          ARecord^.R4 := tx4[i1]; 

          MyList.Add(ARecord); 
      end; 

      end; 

  for j := 0 to (MyList.Count-1) do 
  begin 

    ARecord := MyList.Items[j]; 

   px1[j+3]:= ARecord^.R1; 

     px2[j+3]:= ARecord^.R2; 
      px3[j+3]:= ARecord^.R3; 

       px4[j+3]:= ARecord^.R4; 

  end; 
    for j := 4 to 14 do 

  begin 

   px1[j]:= px1[j]; 
     px2[j]:=px2[j]; 

      px3[j]:=px3[j]; 

       px4[j]:=px4[j]; 

  end; 
    for j := 15 to 32 do 

  begin 

   px1[j]:= 0; 
     px2[j]:=0; 

      px3[j]:=0; 

       px4[j]:=0; 
  end; 

 end; 

procedure TForm1.Button1Click(Sender: TObject); 

begin 
  a[1] := StrToFloat(Edit1.Text); 

  a[2] := StrToFloat(Edit3.Text); 
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  a[3] := StrToFloat(Edit5.Text); 

  a[4] := StrToFloat(Edit7.Text); 
  b[1] := StrToFloat(Edit2.Text); 

  b[2] := StrToFloat(Edit4.Text); 

  b[3] := StrToFloat(Edit6.Text); 
  b[4] := StrToFloat(Edit8.Text); 

 convert(a, b, x1, x2, x3, x4); 

 grANI(x1, x2, x3, x4, ox1, ox2, ox3, ox4); 

 rebra(x1, x2, x3, x4, dx1, dx2, dx3, dx4); 
 centr(x1, x2, x3, x4, cx1, cx2, cx3, cx4); 

 vids_centr(x1,x2,x3,x4,cx1,cx2,cx3,cx4,a,b,dcv); 

 vids_centr(dx1,dx2,dx3,dx4,cx1,cx2,cx3,cx4,a,b,dcr); 
 vids_centr(ox1,ox2,ox3,ox4,cx1,cx2,cx3,cx4,a,b,dcg); 

convert2(x1,x2,x3,x4,dcv,dx1,dx2,dx3,dx4,dcr,ox1,ox2,ox3,

ox4,dcg,tx1,tx2,tx3,tx4,dc); 

 norm (dc,dn); 
 vibir_tochok (tx1,tx2,tx3,tx4,dc,dn,px1,px2,px3,px4); 

 end; 

procedure TForm1.Button2Click(Sender: TObject); 
 var j:Integer; 

begin 

  form2.Show; 
  for j:=0 to 31 do begin 

  form2.StringGrid1.Cells[0, j] := floattostr(px1[j+1]); 

  form2.StringGrid1.Cells[1, j] := floattostr(px2[j+1]); 

  form2.StringGrid1.Cells[2, j] := floattostr(px3[j+1]); 
  form2.StringGrid1.Cells[3, j] := floattostr(px4[j+1]); 

  end; 

  Form2.edt1.Text:=FloatToStr(cx1); 
  Form2.edt2.Text:=FloatToStr(cx2); 

  Form2.edt3.Text:=FloatToStr(cx3); 

  Form2.edt4.Text:=FloatToStr(cx4);  
end; 

end. 
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