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INTRODUCTION

The rapid development of science and technology in the
world, the constantly growing needs of mankind for goods with
improved properties, as well as limited natural resources have
led to the search for methods for obtaining new substances and
materials with a given set of indicators. In Ukraine, in 2017-
2021, under the target scientific research program of the NAS of
Ukraine “New functional substances and materials of chemical
production”, modern scientific approaches were developed to
create non-traditional materials with improved functional
characteristics for various areas of practical application and to
establish ways to control such properties [1]. Within the
framework of the program, fundamental principles for obtaining
substances and materials of a wide range of purposes based on
new energy-saving environmentally friendly technologies for the
needs of various industries and the social sphere have been
developed: energy saving, micro- and nanoelectronics, transport,
aircraft construction, agro-industrial complex, light and food
industry, household chemicals, environmental protection, etc.

Today, the improvement of the standard of living of
society and its sustainable development is largely achieved
thanks to scientific progress in chemical materials science, in
particular in the creation of fundamentally new polymer
composite materials. At the beginning of the 3rd millennium,
composites have gained importance in a wide variety of areas
of human activity, revolutionizing technology, everyday life
and lifestyle. Their practical value is due to the nonlinearity
and synergy of properties that provide an advantage over other



materials, namely: high thermal and corrosion resistance, low
weight in combination with improved mechanical performance
and low cost. Their areas of application have expanded from
household goods (fabrics, textiles, knitwear, packaging,
biomedical products) to high-tech products (for aerospace and
military equipment, microelectronics, energy complex,
metallurgy, construction, healthcare, a new generation of
adsorbents for environmental protection). The possibilities of
giving polymer products the desired characteristics are
virtually unlimited thanks to a wide range of methods for their
modification.

One of the most effective is the introduction of various
additives into composites, especially substances in the
nanoscale. Natural or specially synthesized substances of
different sizes, geometric structure and chemical nature are
used as nanoadditives, which are selected taking into account
the achievement of the desired characteristics of composites,
their cost, the possibility of recycling, the impact on
biodegradability, etc. A significant number of requirements for
nanofillers are satisfied by natural layered aluminosilicates,
silicas, carbon derivatives (nanofibers, nanotubes, fullerenes),
metal nanoparticles (NPs), their oxides, etc. Their use allows
you to regulate the characteristics of polymeric materials and
give them a set of desired properties. Nanocomposites
containing additives of natural or modified clay demonstrate a
sharp improvement in strength and modulus of elasticity, heat
and fire resistance, and gas permeability [2-4]. The
introduction of carbon nanotubes (CNTS) expands the range of
applications in a wide variety of areas: as reinforced and anti-
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corrosion materials, solar cells, chemical sensors, adsorbents,
products for shielding from electromagnetic and microwave
radiation, etc. [5-8]. Due to the unique graphitic structure and
extraordinary biological properties, CNTs are of increasing
interest in biomedicine (drug delivery, bioimaging, biosensor
materials and tissue engineering) [7]. Synthetic fibers and
threads containing noble metal or metal oxide nanoparticles in
their structure acquire antimicrobial, anti-allergic, sorption and
antistatic properties and protect against UV radiation [9-12].
The simultaneous use of two different or bicomponent
nanoadditives is more effective. Polyvinyl alcohol nanofibers
containing Ag/TiO2 nanoparticles exhibit antimicrobial and
photocatalytic activity [13]. Polypropylene monofilaments with
Ag/SiO. nanoadditives have, along with bactericidal properties,
high mechanical and manipulation characteristics [14].
Modification of polymers with nanoadditives also allows
solving environmental and social problems [15-17].
Composites for water purification [15], new environmentally
friendly adsorbents for environmental restoration [16,17], and
materials for biomedical purposes [18] have been created based
on biopolymers. The development and implementation of new,
so-called “green” technologies allows recycling and using
secondary polymers [19-21].

In nanofilled composites of incompatible polymers, in
addition to the concentration and chemical nature of additives,
an important factor is their uneven distribution in the volumes
of component phases, which significantly expands the
possibilities of regulating heterogeneous morphology and
makes mixed systems even more attractive. Under the
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condition of selective localization of highly dispersed
electrically conductive nanomodifiers in the interphase layer,
the content of the additive necessary to reduce the percolation
threshold is significantly reduced [22,23]. At the same time, the
formation of a percolation mesh structure by carbon nanotubes
in the polymer matrix also contributes to a significant increase
in the elastic modulus. The addition of organoclay to the
polyamide/polylactide (PA/PL) mixture caused a change in the
type of PA structure in the matrix - from droplet-matrix to
interwoven, as a result, the heat resistance and plasticity of the
composite material increased without a negative impact on its
stiffness and strength [24]. The preferential localization of
aluminum and titanium oxide nanoparticles at the phase
interface in the polypropylene/copolyamide (PP/SPA) and
polyethylene terephthalate (PET)/PP mixtures, respectively,
resulted in an improvement in the performance characteristics
of composite yarns — an increase in their strength and
dimensional stability due to a decrease in the diameters of in
situ formed PP and PET microfibrils [25,26]. The effectiveness
of nanoadditives in polymer mixtures increases with the
introduction of substances that affect interfacial phenomena
[27-29]. The addition of compatibilizers in the PP/SPA/CNT
and PET/PP/TiO2 mixtures contributed to the improvement of
their matrix-fibrillar structure — the average diameter of PP and
PET fibrils decreased, and the uniformity of their distribution
increased [27,28]. A significant increase in the tensile strength
of biodegradable composites was achieved due to interfacial
adhesion and the formation of a percolation network in the



matrix with the simultaneous use of organomodified
montmorillonite and multilayer CNTs [29].

Today, the number of created varieties of polymer
composites exceeds the number of existing steels. At the same
time, such materials are characterized by a longer service life
of products, as well as a better price-quality ratio. The tendency
to create new composites is constantly growing, despite the
limited amount of natural raw materials, since only ~ 10% of
petroleum products are spent on the production of all chemicals
from oil, including monomers.

In chemical technology, the main criterion for testing
theoretical hypotheses remains the results of experiments,
which are laborious and long-term. Thus, the development of
new nanocomposites requires research aimed at establishing
physicochemical factors that determine the compatibility and
segregation of components, the formation of a
microheterogeneous structure and the relationship with the
operational characteristics of products based on them. An
important task is to minimize the transition time from
laboratory experiments to industrial samples. An effective
means of increasing the efficiency of scientific research in
solving problems of calculation, analysis, optimization and
prediction of chemical and technological processes is the
method of mathematical modeling of the experiment. The
mathematical model is a response function that connects the
optimization parameter characterizing the results of the
experiment with the parameters that vary during the
experiments. Response surfaces in multicomponent systems are
complex and can be adequately described only by polynomials
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of high degrees, which requires a significant number of
experiments, since it is known that in a polynomial of degree n,
coefficients are added from the number of components g. To
accelerate research and increase the reliability of the results, we
have developed computer programs that allow us to build plans
for conducting experiments in the studied area of the factor
space for any types of mixture systems and all possible
combinations of ingredients in three- and four-component
heterogeneous compositions [30-33]. With the help of the
created programs, plans are built in an automated mode using
three types of models of dependence of the output parameters
on the content of components - incomplete cubic, cubic and
quadratic, which establish the relationship between the content
of ingredients and the properties of the system. Calculation of
the coordinates of the points of the experimental plan is also
carried out using software. To optimize the composition of the
composition, software has been developed using the
generalizing function of the Harrington criterion and using the
penalty function method with the subsequent application of
gradient descent with step fragmentation. Thus, the use of
mathematical experimental planning using software will allow
to accelerate the conduct of experiments dozens of times,
sharply reduce their number and quickly identify the optimal
variant of the studied process.

Further  scientific  research into  heterogeneous
multicomponent systems using the developed software will
contribute to the development of Ukraine's chemical complex
and the production of modern polymer composite materials, the
production and use of which in various industries will increase
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the competitiveness of domestic products in the domestic and
foreign markets, significantly reduce the country's dependence
on imported chemical products, and solve environmental and
social problems through the introduction of "“green"
technologies.



CHAPTER 1. COMPOSITE NANOFILLED
SYNTHETIC FIBRE MATERIALS

Since ancient times, fibers, fibrous materials and
products made from them have played an important role in
people's lives. Until the beginning of the 20th century, the raw
materials for fibrous materials were natural fibers - wool,
cotton, flax, hemp, silk. With the expansion of requirements for
the performance characteristics of such materials, especially for
technical products, there was a need to create alternative fibers
and threads. Starting from the middle of the last century, the
development of the science of synthetic polymers, their ability
to transition to a viscous-fluid state and the ability to
longitudinally deform a liquid jet flowing from the spinneret
opening, determined the emergence and existence of the field
of technology of fibrous materials, including chemical fibers.
During this period, a group of so-called “classical® or
"traditional” fibers was formed: polyamide, polyester,
polyolefin, polyacrylonitrile, polyvinyl chloride and polyvinyl
alcohol. Today, traditional fibers are subjected to targeted
modification in order to improve or give them fundamentally
new functional characteristics. For this purpose, various
methods of modification are used, among which the most
common are physical (consists in reducing the dimensional
characteristics of individual filaments to micro- and nanosizes)
and composite, in which fibers are formed from binary
mixtures of polymers or with the introduction of various
additives (dyes, flame retardants, compatibilizers, substances in
the nanoscale, etc.). Due to this, fundamentally new types of
fibers and fibrous materials have appeared - high-strength,
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heat- and chemical-resistant, non-combustible, electrically
conductive, sorption, ion-exchange.

Composite materials include materials that consist of
two or more substances that structurally complement each
other and have properties that are absent in each individual
component. The performance of composites depends on many
factors: the chemical nature of the matrix and filler, volume
fraction, degree of dispersion, orientation, uniformity of the
distribution of additive particles, the size and properties of the
transition layer, etc. Among them, the size of nanoparticles
plays a dominant role. In accordance with the terminology
adopted by IUPAC (International Union of Pure and Applied
Chemistry), objects with a size not exceeding 100 nanometers
are considered nanoparticles. They can be of various shapes -
plates, tubes, spheroids, rods, while at least in one dimension
their size must be in the range from 1 to 100 nm. Filled
composite fibers and filaments in which at least one of the
components has the specified dimensions are called nanofibers.

Nanomaterials have always existed in nature in the form
of composites filled with carbon black or natural clay, and have
been used for many centuries. At the same time, they are new
and little studied for materials science. The specificity of the
characteristics of substances at the nanometer scale and their
associated new unique properties are due to the fact that the
dimensions of the structural elements of nanoobjects lie in the
range (10-9+10-7) m, have a complex internal organization, the
ability to pack tightly, strong lateral (side) interactions, as well
as a high surface area to volume ratio. The properties of
nanocomposites are also largely determined by the size of the
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transition layer at the filler/polymer phase interface. The
interface, which is around the nanoparticle, has a finite
thickness, within which the system parameters differ sharply
from similar characteristics in the polymer volume. The
experimentally determined thickness of the interfacial layer
ranges from 0.004 to 0.16 mm and depends on the degree of
affinity between the surface of the NPs and the functional
groups of the macromolecules of the polymer matrix [34]. The
chemical nature of the additives and their concentration
significantly affect the interfacial phenomena and properties of
composite fibrous materials.

1.1. Synthetic classical fibers and threads filled with
nanoadditives of various chemical nature

The increasing requirements for the quality and
functional characteristics of fibers and threads lead to the
search for methods of their modification in order to provide
technical products and household goods made from them with
a set of unique consumer properties. Modern textile materials
for everyday and especially for special clothing must have high
mechanical and hygienic indicators, as well as reliably protect
a person from external negative factors (high and low
temperatures, increased content of gases and emulsions of toxic
substances, biological factors, electromagnetic radiation).

Nano-filled industrial synthetic fibers obtained by
processing melts or polymer solutions have been produced for
more than 20 years. Nanoparticles of various chemical nature,
size and configuration are used for their modification: carbon
derivatives, natural minerals, metals, metal oxides, etc. In this
case, NPs with the desired size, shape and functional properties
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are selected from previously obtained ones or they are
synthesized directly in the molding solution or on the surface
of the finished fibers. Depending on the method of introducing
nanoadditives, their content, dispersion and continuity of the
structures that they form in the volume of the material, fibers
with fundamentally new characteristics are obtained, which can
be divided into bulk and surface. Bulk properties include
mechanical, light, heat and electrical conductivity, density, etc.
Surface properties are the sorption characteristics of fibers in
relation to various substances (liquids, gases, ions, dyes), their
catalytic activity, reflectivity, dyeing ability and other
indicators that depend on the electronic structure of atoms
located on the surface of the particles they form.

The unusual structure of natural aluminosilicates and
their inherent properties provide broad opportunities for the
creation of a range of multifunctional polymer materials. The
basis of clays are silicon and alumina ions, which form,
respectively, tetrahedral and octahedral two-dimensional
networks interconnected into layers (plates) with dimensions of
~ (1000x1000x1) nm, which self-organize into packages with
an interlayer space of up to 50 nm. The outer and inner
surfaces of the plates are hydrophilic and polar, which
promotes wetting and penetration into the space between the
layers of both low- and high-molecular compounds that have
polar groups in their structure. Due to this, layered silicates are
the most effective modifiers for hydrophilic polymers [35]. The
introduction of natural alumina particles into the structure of
synthetic fibers from polar polymers provides high electrical
and thermal conductivity, mechanical strength, chemical
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activity, protection against UV radiation and fire [3,4,36].
Thus, in polyamide fibers containing 5.0 wt. % of alumina
nanoparticles, the tensile strength and bending strength
increase by 40 and 60 %, respectively.

A more complex task is the modification of fibers
based on non-polar or weakly polar polymers. In this case, the
incompatibility of hydrophilic clays and hydrophobic
polymers is the main problem, to solve which clays are pre-
modified in various ways: by ion exchange of clay cations for
organic cations; by adsorption on the surface of water-soluble
polymers, alkyl ketones, methyl acrylate, surfactants; by
grafting organosilanes to the clay surface with the formation
of Si-O-Si bonds; by introducing organic molecules capable
of Van der Waals or ion-dipole interaction with the clay
surface, etc. [2,35]. The nature of the packing of modifier
molecules in the interlayer space determines the distance
between silicate plates, the organophilicity of clays and, as a
result, the structure of nanocomposites when mixed with
polymers. Filling polypropylene fibers with organomodified
alumina allows to eliminate their significant disadvantage as
textile threads, namely the ability to dye. Fibers containing
15.0 wt. % alumina are dyed with dyes of various classes to
achieve deep tones, which significantly expands the areas of
their application in the production of household materials.

The discovery of carbon nanotubes (CNTSs) in 1991 led
to significant progress in the field of nanotechnology and
marked a new era in the material world, including in the field
of chemical fibers. Single- and multi-walled CNTs are
characterized by a complex of unique mechanical, electrical,
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thermal and chemical properties, as well as a high ability to
transport electrons. The elastic modulus of carbon nanotubes
approaches the values of this indicator for diamond (1.0 and
1.2 TPa, respectively), their strength is 100 times higher than
the best samples of steel. They are also characterized by high
electrical conductivity, thermal stability (up to 2800 ° C in
vacuum), thermal conductivity (approximately twice as high as
that of diamond). The elasticity of multi-walled CNTs can
reach 5000 GPa, they bend like a straw, but do not break and
can straighten without damage [5]. Due to their ultra-high
mechanical properties, single- and multi-walled carbon
nanotubes are a particularly attractive reinforcing filler. The
strength and Young's modulus of polypropylene fibers are
increased by almost 3 times when 5.0 vol. % of CNTs are
introduced into their structure, provided that they are
additionally oriented [37]. Polyvinyl alcohol fibers filled with
nanotubes are 120 times stronger than steel wire and 17 times
lighter than Kevlar fiber. The introduction of (0.5+3.0) wt. %
of CNTs into the melt of polypropylene of different grades
provides an increase in the tensile strength of monofilaments
(P) and their dimensional stability (estimated by the value of
the initial modulus E) in the entire range of additive
concentrations [38]. The dependences of P and E on the CNT
content are extreme: maximum values are achieved when 0.5
wt. % of the additive is introduced. The best mechanical
characteristics are possessed by monofilaments formed from
PP with lower viscosity, which may be associated with a
thinner and more uniform dispersion of CNTs in the melt.
Adding nanotubes to synthetic fibers in an amount of 5 to 20
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wt. % provides them with electrical conductivity at the level of
copper wire and chemical resistance to the action of many
reagents [39]. To date, a significant problem in creating high-
performance polymer/CNT composites is the difficulty of
uniform dispersion and orientation of nanotubes in the matrix.
The new method of “layer-by-layer planting” proposed by the
authors [40] allowed the formation of polyvinyl alcohol fibers
with adjustable CNT orientation, as a result of which the
reinforcement effect increased sharply — the strength of the
fibers increased from 50 to 1255 MPa, and their electrical
conductivity also increased. The formation of a percolation
network by carbon nanotubes in the polymer matrix provides
an increase in thermal, optical, and electrical parameters even
at an additive concentration of 0.0025 wt. % [6].

Effective modifiers are also nanoparticles of metals
(Ag, Cu, Ti, Mn, Zn, Au, Pt, Pa) and metal oxides. Fibrous
materials with additives of copper, nickel and silver NPs
exhibit sorption and biocatalytic properties, with platinum
inclusions they are catalytically active, and nickel-, iron- and
cobalt-containing ones acquire magnetic characteristics [10,41-
44]. The introduction of zinc oxide NPs in the form of
nanorods into polypropylene fibers improves their mechanical
performance [11]. Polyester textile threads filled with TiO,
Al,O3, ZnO and MgO nanoparticles exhibit photocatalytic
activity, protection from UV radiation, antistatic properties,
and abrasion resistance [12,13]. Modification of synthetic
fibers with TiO2 and ZnO nanoparticles gives products made
from them the ability to self-clean like plant leaves, insect
wings, etc. The introduction of aluminum oxide nanoparticles

16



[25] and silicas with different specific surface areas [45] into
their structure contributes to the improvement of the
mechanical properties of polypropylene monofilaments. The
use of combined nanoadditives enhances the modifying effect
and expands the spectrum of operational characteristics of
fibers and products based on them. The introduction of
silver/silica [14], silver/alumina [46], and mixed oxide
TiO,/SiO, [47] into the structure of PP monofilaments gives
them biological activity and improves mechanical properties.
Nanosized silicon dioxide in the structure of synthetic fibers
prevents pollution and promotes self-cleaning of products
made from them, and the bifunctional additive TiO2/SiO>
makes it possible to create a new generation of effective
nanofilled materials for cleaning technological environments,
including the medical industry [48]. In terms of their sorption
performance, they exceed ion exchange resins, while being 5
times cheaper than them. Such nanocomposites absorb a wide
range of metal ions from water, destroy organic compounds,
concentrate and separate radionuclides.

1.2. Nanofilled composite yarns and fine-fiber
materials from melts of polymer blends

Polymer blending is a simple and affordable way to
obtain new composite fibrous materials with predicted
properties and is more effective than the synthesis of new
monomers and polymers. Blends can be fully compatible or
incompatible and partially compatible. In this case, various
types of polymer dispersions occur - from simple binary to the
formation of block copolymers, interpenetrating networks,
microfibrillar or droplet structures, molecular composites, etc.

17



[3,49]. The formed types of phase morphologies determine the
properties of such systems. Of particular interest are mixtures
in which a component of the dispersed phase forms micro- or
nanofibrils in the matrix of another. In the threads obtained
from them, a self-reinforcing effect occurs, the degree of which
can be regulated by changing the ratio of the sizes of the
reinforcing fibers. By increasing the length or decreasing the
diameter of the microfibrils, the mechanical properties of
microfibrillar composites (MFC) can be significantly
improved [50]. The process of obtaining MFC includes three
main stages: extrusion mixing of melts of two polymers with
different melting points (Tmp) and formation of an extrudate or
monofilament; their cold drawing for longitudinal orientation
and fibrillation of both phases; subsequent heat treatment at a
temperature in the range between the Tmp of the mixture
components, which ensures the formation of an isotropic
matrix.

A schematic representation of the stages of the MFC
production process is shown in the figure 1.1 [51]. Threads
with a microfibrillar structure have a number of advantages
over traditional ones: increased strength and resistance to
deformation, relative ease of production and further processing,
reduced weight, etc.
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Fig. 1.1 — Scheme of formation of microfibrillar composites

Today, the insitu formation of micro- or nanofibrils of
one component in the matrix of another has been implemented
for many pairs of polymers by extrusion [3,26-28,52-60],
blowing [61,62], uniaxial stretching [63] and 3D molding
[1,64,65]. Regulation of microfibrillar morphology (reduction
of fibril diameters, increase in their length and mass fraction) is
achieved by introducing special substances into the mixture of
incompatible polymers - compatibilizers [66], nanoadditives
[25-27,47,57,60,65] or their compositions [28,67,68]. It is
known that the properties of composite monofilaments largely
depend on the type of structure formed by the polymer of the
dispersed phase in the matrix. In this case, the formation of
morphology is determined by the course of a number of
microrheological processes that occur with droplets of the
dispersed phase during the flow of the melt, namely: their
dispersion, coalescence, deformation and migration. The
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degree of manifestation of each of them depends on the ratio of
the main ingredients of the mixture, the content of the additive
and its influence on the rheological properties of the
components and the course of interfacial processes. The
modifying effect of fillers on the structure of three- and four-
component systems is manifested in a change in the ratio of
viscoelastic properties of the ingredients, a decrease in the
value of interfacial tension and an increase in the stability of
liquid cylinders (fibrils). Nanoadditives in the melt of
thermodynamically incompatible mixtures play a dual role.
First, due to the compatibilizing effect in modified systems, the
degree of dispersion of the fiber-forming polymer and the
Kinetic stability of the melts increase, and the processes of
droplet aggregation are inhibited, which contributes to
obtaining a finer morphology. Secondly, NPs give fibrous
materials unique properties inherent in substances in the
nanoscale.

1.2.1. Nanofilled composite threads with microfibrillar
structure. One of the most studied systems for obtaining
threads with increased initial modulus and tensile strength are
blends of polyethylene terephthalate (PET) with polyolefins
(PO) or with polyamides (PA), since polyester fibers are
characterized by high resistance to deformation, which makes
them an ideal reinforcing element. The formation of PET
microfibrils in a PO and PA matrix allowed to significantly
increase the dimensional stability of the threads and obtain a
high-strength tire cord. Studies of the morphology and
mechanical properties of composite threads based on PET/PP
blends filled with titanium oxide nanoparticles showed that the
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morphometric characteristics of the fibrillated PET phase,
namely their diameter and length and distribution uniformity,
depend on the concentration and size of the filler nanoparticles
[26,28]. At a titanium oxide NP content of 4.0 wt. % the
average diameter of microfibrils decreases from 5.4 pm to 1.1
um, and the range of diameters narrows from (2.0+9.2) to
(0.6+4.5) um compared to the original mixture. At the same
time, their length also increases. The change in the structure of
the threads caused an increase in the modulus and tensile
strength by 1.4 and 1.3 times, respectively.

The possibility of controlling the process of PP
microfibril formation in the SPA matrix by introducing into the
melt of the PP/SPA mixture of 30/70 wt. % nanoparticles of
oxides of various metals was shown by us in the works
[25,69,70]. As can be seen from the microphotographs of
cross-sections of extrudates of PP/SPA/aluminum oxide
mixtures shown in Fig. 1.2, in the initial mixture PP is roughly
dispersed in the SPA matrix. The introduction of
(0.1+3.0) wt. % AlLO3z nanoparticles into the system
contributes to improving the compatibility of components at
the phase interface and causes an increase in the degree of
dispersion and uniformity of distribution of polymer particles
of the dispersed phase in the dispersion medium. The
modifying effect is achieved due to the compatibilizing
(emulsifying) action of aluminum oxide nanoparticles, as
evidenced by the decrease in the interfacial tension in
nanofilled mixtures [70].
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a)

Fig. 1.2 — Microphotographs of cross-sections of extrudates of mixtures with

different aluminum oxide contents, wt. %: a) 0; b) 0,1; ¢) 0,5; d) 1,0; €) 3,0
Microscopic studies of longitudinal sections of
extrudates (Fig. 1.3) and residues of the dispersed phase after
extraction of the matrix polymer (Fig. 1.4) indicate that
aluminum oxide nanoparticles do not prevent droplets of the
dispersed phase from deforming and merging with the

formation of liquid jets (microfibrils) of PP in the SPA matrix.
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Fig. 1.3 — Micrograph of a longitudinal section of a PP/SPA/ Al>O3
extrudate with a nanoadditive content of 1.0 wt. %
During the treatment of extrudates with a solvent selective for
PP, the copolyamide goes into solution, and the dispersed
phase remains mainly in the form of a bundle of microfibrils
(Fig. 1.4). Microscopic studies of the influence of the
concentration of aluminum oxide NPs on the dimensional
characteristics of different types of polypropylene structures
indicate that, along with microfibrils, a small number of films
and micron-sized particles are also formed. Microfibrils are the
predominant type of structure in extrudates of the original and
nanofilled mixtures. When aluminum oxide NPs are added, the
diameter of the microfibrils decreases, and their mass fraction
increases in the entire concentration range. At the same time, at
a nanoadditive content of 1.0 wt. %, the average diameter of
the microfibrils decreases to 2.2 pum (versus 4.0 um for the
original mixture), and their fraction increases to almost 95%.
This is due to the increased resistance of nanofilled microfibrils
of smaller diameters to decay, as evidenced by a decrease in
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the value of the instability coefficient and an increase in their
lifetime [70].

Fug. 1.4 — Electron micrograph of dispersed phase (PP) structures after
matrix polymer (CPA) extraction

The studies performed showed that the introduction of
aluminum oxide NPs into the melt of the PP/SPA mixture not
only does not complicate their processing, but even increases
the stability of the formation and thermal orientation drawing
of modified monofilaments. It is known that during the
spinneret and thermal orientation drawing process, further
deformation of the dispersed phase structures occurs, while the
microfibrillar morphology in the monofilaments is preserved
(Fig. 1.5) [59].
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Fig. 1.5. Electron micrographs of polyoxymethylene microfibrils (at various
magnifications) formed in situ in ethylene vinyl acetate copolymer

Important indicators of the threads, from the point of
view of further processing and the quality of products based on
them, are mechanical characteristics. The tensile strength and
modulus of elasticity of composite monofilaments from
nanofilled systems are improved, compared with the threads
from the original mixture (Table 1.1). This is natural, since in
the PP/SPA/AIO3 mixture a matrix-fibrillar morphology is
formed, that is, the effect of self-reinforcing the threads takes
place. In this case, the modifying effect depends on the
concentration of the nanoadditive: an increase in the content of
aluminum oxide NPs from 0.1 to 1.0 wt. % is accompanied by
an increase in the strength and dimensional stability of the
threads, and at a concentration of 3.0 wt. % the values of P
and E decrease. The degree of increase in the mechanical
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indicators of the monofilaments correlates with the
morphology of the extrudates and the dimensional
characteristics of PP microfibrils. Their minimum diameter and
maximum proportion in the structure determine the highest
values of strength and resistance to deformation of
monofilaments formed from a mixture containing 1.0 wt. %
alumina.

Table 1.1 — Effect of aluminum oxide nanoparticle content on
mechanical properties of composite monothreads

Name of | Content of | Extrac- |Strength,| Elastic | Elonga-
polymer, | Al,Os, wt. | tion MPa modulus | tion, %
mixture % multipli- MPa
city
CPA 0 6,0 270 3240 13,7
PP 0 7,2 390 4970 8,9
PP/C{A 0 4,0 310 3870 14,6
PP/CPA 0,1 4,3 360 3910 14,0
PP/CPA 0,5 4,5 390 4100 13,8
PP/CPA 1,0 5,0 430 4520 12,1
PP/CPA 3,0 5,0 390 4150 11,9

The obtained result is consistent with our previous conclusion
that the values of P and E reach maximum values when the
entire polymer of the dispersed phase forms microfibrils [59].
Recent studies have shown that the most effective is the
combined use of substances in the nanostate and traditional
compatibilizers [27-29,71,72]. Thus, it was shown that for an
incompatible PP/PA mixture, there was a synergistic effect on
the morphology of the nanodispersed additive (hydrophobic
silica NPs) and the compatibilizer (polypropylene with grafted
maleic anhydride PPgMA): the addition of PPgMA provided a
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12-fold reduction in the size of polyamide droplets, and when
used simultaneously with a nanoadditive — 25-fold [71]. The
introduction of polystyrene additives with grafted maleic
anhydride (PSgMA) into the PS/PA/CNT mixture allowed to
increase the uniformity in size and geometric shape of
polystyrene droplets and the mechanical properties of
composites [72]. Modification of the CNT surface with a
surfactant ionic liquid promoted the formation of a percolation
network structure by nanotubes in the polymer matrix, as a
result of which the electrical characteristics of composites
based on PS/butylene adipate and terephthalate copolymer
mixtures were dramatically improved. In this case, double
percolation occurred, and the formation of a network structure
by nanotubes also caused a significant increase in the elastic
modulus. Biodegradable biological materials with improved
mechanical properties were obtained by simultaneously using
multilayer CNTs and organomodified montmorillonite - a
synergistic effect was achieved with a content of 0.5 wt. % of
nanoadditives [29]. Simultaneous introduction of two
compatibilizers into the PP/SPA mixture made it possible to
implement a microfibrillar structure in compositions with a
ratio of components corresponding to the phase change region
(40/60 and 50/50 wt. %) [66]. The authors [28] showed that the
simultaneous use of a nanodispersed additive (TiO2) and a
compatibilizer (PPgMA) in PP/PET blends is the most
effective and provides maximum improvement in the
mechanical properties of composite yarns by increasing the
length and minimizing the diameter of PET fibrils in the
polypropylene matrix.
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Systematic studies on the possibility of controlling the
process of microfibrillar structure formation in melts of
thermodynamically incompatible polymer mixtures by
introducing compatibilizer/nanoadditive compositions and
establishing the structure—property relationship of fibrous
materials have been conducted at KNUTD for many years
[27,32,47,59,67,68]. Thus, carbon nanotubes and PPgMA
compatibilizer were used to modify a PP/SPA mixture of 20/80
wt. %. The mechanical properties of monofilaments formed
from the original polymers and modified mixtures are
presented in Table 1.2 [27]. As can be seen from Table 1.2, the
introduction of 20 wt. % of stronger PP into the copolyamide
leads to an improvement in the mechanical performance of
monothreads. The tensile strength and initial modulus of
monofilaments, in the structure of which there is a nanofiller or
compatibilizer, also increase. In all the studied mixtures,
polypropylene forms in situ microfibrils in the SPA matrix and
provides self-reinforcement of the threads.

Table 1.2 — The effect of modifier additives on the mechanical
properties of monofilaments

Linear Elastic Elonga-
: Strength .
Sample name density, modulus tion, %
MPa
text MPa
PP 5,6 370 2600 9,4
CPA 7,3 210 3240 20,9
PP/CPA 8,1 260 3870 15,6
PP/CITA/PPgMA 9,1 320 3750 17,3
PP/CITA/CNT 11,0 340 4680 20,1
PP/CPA/CNT/

PPGMA 10,3 390 5110 19,8
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The addition of compatibilizer and carbon nanotubes
contributes to the reduction of microfibril diameters and the
proportion of unwanted structures (particles, films), resulting in
an increase in the strength and initial modulus of
monofilaments. The maximum improvement in the mechanical
properties of composite monofilaments occurs with the
simultaneous addition of CNTs and PPgMA, which
corresponds to the most perfect microfibrillar structure: the
average diameter is 1.5 um (versus 2.6 um for the original
mixture) and the proportion of films, the presence of which is
known to worsen the mechanical properties of the filaments, is
sharply reduced [59].

The possibility of controlling the process of self-
reinforcing composite yarns from a PP/PVA blend by
simultaneously introducing a nanofiller and a compatibilizer is
shown in [67]. Quantitative microscopic studies of the effect of
a nanodispersed silver/silica additive, a sodium oleate
compatibilizer (Ci1sH3302Na) or their combination on the
microstructure of PP/PVA extrudates indicate that individual
substances and their binary composition have an emulsifying
effect on the melt and allow regulating its morphology. In
modified compositions, the average diameter of microfibrils (d)
decreases and their mass fraction increases, and the number of
other types of structures decreases (Table 1.3). In this case, the
simultaneous use of a nanofiller and a compatibilizer is more
effective.
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Table 1.3 — The influence of additives silver/silica, sodium
oleate or their compositions on the characteristics of structure
formation processes in melts of PP/PVA blends

Content of
s structures of
Name of the mixture, Microfibrils | “Gher types,
content of components, wt. %
wt. % conten i
° dum | twt. [P fims
% cles
PP/PVA, 30/70 35 | 8,5]| 39 | 96
PP/PVA /Ag/SiO,, 30/70/1 16 | 90,6 | 3,3 6,4
PP/PVA /C1sH3302Na, 30/70/3 14 | 927 | 36 | 3,7
PP/PVA /Ag/SiOz /C18H3302Na
30/70/1/3 L1 197912109

As can be seen from Table 1.3, the diameter of microfibrils in
the four-component mixture decreases by 3.2 times, while
when adding 1.0 wt. % Ag/SiO2 nanoparticles or 3.0 wt. %
sodium oleate, d decreases by 2.2 and 2.5 times, respectively.
In the presence of two modifiers, migration processes are
significantly slowed down, which leads to a sharp drop in the
number of films.

Studies of the mechanical properties of composite
monofilaments show that they also indirectly correlate with the
microstructure formed by the polymer of the dispersed phase in
the matrix (Table 1.3, 1.4). The highest indicators of strength
and resistance to deformation are those of threads formed from
a composition modified with a nanofiller and a compatibilizer
simultaneously. In this case, polypropylene is present in the
PVA matrix mainly in the form of thinner microfibrils, and the
proportion of films is reduced by almost 10 times.
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Table 1.4 — The effect of silver/silica, sodium oleate or their
compositions on the mechanical characteristics of composite
monofilaments from a PP/PVA blend

Tex | Tensile | Initial |Elongati
strength, [modulus| on, %

MPa , MPa
PP/PVA, 30/70 8,1 300 4200 9,3

PP/PVA /Ag/SiO;, 30/70/1 7,4 390 4800 13,0

Name and composition of the
mixture, wt %

PP/PVA /C1gH3302Na, 30/70/3| 7,2 470 5300 8,5

PP/PVA /Ag/SiOz /C18H3302Na,
30/70/1/3

7,0 550 6400 8,0

Thus, the maximum self-reinforcing effect of composite
filaments formed from compatibilized nanofilled incompatible
polymer blends is the result of improving their matrix-fibrillar
structure.

1.2.2. Nanofilled fine-fiber materials derived from
microfibrillar composites. Today, there are a number of
methods for producing fine-fiber materials with micro- and
nano-sized diameters: aerodynamic spraying of the melt with a
jet of compressed air [73-75], electroforming from a polymer
melt or solution under the action of electrostatic forces [76-80],
and processing of melts of mixtures of thermodynamically
incompatible polymers into composites with a micro- and
nanofibrillar structure [57-65,81-86].

Aerodynamic forming produces nonwoven materials
(NM) with fiber diameters of (1.0-20.0) pwm. With the
maximum increase in air velocity during polymer melt
blowing, NM were formed from nanofibers with an average
diameter of ~ 500 nm [75]. Electroforming produces nanofiber
sheets with individual filament diameters of 10 nm or more,
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but the use of this method is limited by low productivity and
high toxicity of solvents. In order to give nonwoven materials
new properties (for example, increasing filtration efficiency
and reducing hydraulic resistance of filter materials), they are
obtained on the basis of micro- and nano-sized fibers by
combining blowing and electrospinning methods [76,79], but
the production of such materials is complicated by the
incompatibility of the forming speeds in both methods. In
recent years, needle-free electrospinning technology has been
developed, which can eliminate the shortcomings of traditional
electroforming devices, such as low productivity, non-
uniformity of sheets in thickness, limited size, and difficulty in
cleaning a single needle [80]. The developed needle-free
electrospinning apparatus can be used for the industrial
production of nanofiber membranes of considerable width.

By processing melts of thermodynamically incompatible
polymer mixtures for which microfibrillar morphology is
realized, fine-fiber materials are obtained in the form of
complex threads, staple fibers or nonwovens, in which
individual filaments have micro- or nanosizes [57-65,81-87].
The structure of the composite monofilament or film, which
comes out of the molding hole, is a continuous phase of the
dispersion medium filled with thin jets (fibrils or microfibers).
After extraction of the matrix from the composites with a
solvent inert to the polymer of the dispersed phase, bundles of
micro- and nanofibers or nonwoven webs from them remain.
Fig. 1.6 shows a micrograph of polypropylene microfibrils with
an average diameter of (1.5+2.5) um after dissolution of
copolyamide from the composite strand [64].
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Fig. 1.6. Electronic microphotgraph 6f PP microfilbrils after
extraction of SPA from the strand
By forming a jet on a capillary viscometer with subsequent
thermal drawing from the melt of a polybutylene
terephthalate/polypropylene  (PBTE/PP)  mixture, PBTE
nanofibers with a diameter of 600 nm and a length of 100 um
were obtained [88]. By processing polyethylene terephthalate
(PET)/PP  [26] and polytetrafluoroethylene/polylactide
(PTFE/PL) [86] compositions by extrusion, PET microfibrils
with diameters of (2.0+9.2) um and PTFE nanofibers with
diameters of (100+500) nm were formed. Nonwoven material
from polypropylene microfibers was obtained after extraction
of the matrix polymer from composite films formed from the
melt of a PP/SPA mixture on a worm press through a flat-slot
head of the “fishtail” type [57]. The microfibers had diameters
ranging from tenths of a micrometer to several micrometers,
were of practically continuous length, and were oriented in the
direction of extrusion. By processing mixtures consisting of
two polymers of the dispersed phase and the matrix, a
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nonwoven material with a bimodal distribution of fibers by
diameter was obtained [61]. Nonwoven fabrics were formed
from mixtures in which the matrix polymers were polystyrene
(PS) or polyethylene oxide (PEO), and the dispersed phase was
polyethylene (PE) and polyamide 6, by the blowing method.
After dissolving PS with tetrahydrofuran and PEO with water,
a fine-fiber material with an average diameter of PA6
microfibers ~ 9.0 um and PE nanofibers ~ 600 nm was
obtained.

1.2.2.1.  Nanofilled complex microfibrillar threads.
Modification of the properties of synthetic fibers and threads
by reducing the diameters of filaments to micro- and nano-
sizes and introducing nano-additives into their structure is one
of the most promising areas in the field of chemical fiber
technology, as it allows significantly improving the quality of
products and reducing the material intensity of production.
Materials from ultrafine fibers retain all the positive properties
inherent in products from traditional synthetic fibers: strength,
high dimensional and wear resistance. At the same time, due to
the very small diameter of individual filaments in textile
products from them, many air voids can form. Thanks to them,
free air exchange occurs between human skin and the external
environment, i.e. such materials have better hygienic
properties. Formation of complex microfibrillar fibers and
threads by processing melts of polymer mixtures allows you to
regulate their consumer characteristics both due to the
properties inherent in nanofillers and due to their effect on the
size of the filaments of the dispersed phase component in the
matrix.
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The dependence of the mechanical properties of complex
yarns from polypropylene microfibrils on the content of
nanoadditives and their chemical nature is given in Table 1.5,
1.6 and Fig. 1.7. Microfibrillar yarns were obtained by
extraction of the matrix polymer from monofilaments formed
from PP/SPA mixtures filled with aluminum oxide
nanoparticles [25], as well as bicomponent nanoadditives
TiO2/SiO2 [47], Ag/ SiO2 and Ag/Al,O3 [87]. As can be seen
from Table 1.5, the tensile strength, elastic modulus and
elongation of complex yarns from the initial mixture are close
to similar values for textile polypropylene yarns formed using
traditional technology. The introduction of aluminum oxide
nanoparticles into their structure leads to an increase in
mechanical properties, the degree of increase of which, as for
composite monofilaments, is determined by the content of the
nanoadditive and correlates with the dimensional
characteristics of PP microfibrils.

Table 1.5 — Effect of nanoscale alumina content on mechanical
properties of complex threads

Contetn | Strength, Elastic Elonga- | Maintaining
of MPa modulus, tion, strength, %
AlOs, GPa % in a knot|in a loop
wt. %

0 260 3,50 12.3 63 68
0.1 310 3,75 11.4 67 71
0.5 335 4,08 11.2 72 75
1.0 380 4,29 11.0 75 78
3.0 360 4,15 10.3 70 73

The minimum average diameter of microfibrils (2.2 um) and
their maximum proportion (94.9 wt. %) in the extrudate of the
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mixture containing 1.0 wt. % ALO3z provided mono- and
complex filaments with the highest strength and modulus of
elasticity. In addition, microfibrillar filaments are characterized
by improved elasticity, compared with textile polypropylene
filaments, as evidenced by the values of strength retention in
the loop and knot.

Table 1.6 presents the results of a study of the influence
of the content of the mixed oxide TiO>/SiO> on the properties
of complex fibers from nanofilled PP microfibrils [47]. The
data in the table indicate that the nature of the dependence of
the mechanical properties of microfibrillar fibers on the content
of the nanofiller is similar to that described for fibers modified
with alumina.

Table 1.6 — Effect of TiO2/SiO> nanoparticles concentration
on the properties of complex threads

Content of Strength, Initial Elon- Specific
TiO,/SiOy, MPa modulus, gation, surface
wt. % GPa % area, m’/g
0 160 2,8 13,3 84
0,5 190 3,56 11,8 135
1,0 240 3,8 12,6 190
3,0 220 3,4 11,7 210

Increasing the concentration of mixed oxide NPs to 1.0 wt. %
leads to an increase in strength and initial modulus by 1.5 and
1.3 times, respectively, and its further increase is accompanied
by some deterioration of the mechanical characteristics of the
threads, which is associated with an increase in the diameters
of microfibrils, as well as the number of films. The
introduction of (0.5+3.0) wt. % TiO2/SiO, nanoparticles into
the microfibril structure leads to an increase in their specific
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surface area in the entire concentration range.

Bifunctional inorganic substances in the nanostructure —
silver/silica and silver/alumina also contribute to improving the
quality of microfibrillar filaments: their tensile strength (P)
and elastic modulus (E) increase (Fig. 1.7). At a concentration
of nanofillers in the mixture of more than 1.5 wt. %, the growth
rate slows down. The established dependence is natural and
may be associated with the effect of filling with a high-
modulus nanodispersed additive, as well as with a change in
the morphology of complex filaments [87].
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Fig 1.7 — Effect ofar)1anoadditive concentration on the str?e)ngth (@)
and modulus of elasticity (b) of microfibrillar PP threads: 1- Ag/SiOy; 2 —
Ag/Al,O3
The effect of modification with Ag/SiO; additive is more
pronounced compared to Ag/Al.Oz nanoparticles, which is due
to their higher specific surface area. It is known that silicas
provide a significant improvement in the mechanical properties
of filled compositions. In this case, the reinforcing effect of
silica NPs correlates with the value of its specific surface area:
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the modulus increases when Ssa > 50 m?/g, and the degree of
reinforcement increases with the increase of this indicator [89].

The possibility of improving the quality of complex
yarns by simultaneously using two modifying additives of
nanofiller and compatibilizer is shown in [68] on the example
of complex yarns obtained by processing mixtures of
PP/CPA/CNT and PP/CPA/CNT/compatibilizer. Ethylene
copolymer with vinyl acetate or sodium oleate was used as a
compatibilizer. Studies of the mechanical properties of yarns
from PP microfibrils showed that adding 0.1 wt. % of carbon
nanotubes to the mixture increases their strength and initial
modulus (Table 1.7). From the electron micrographs shown in
Fig. 1.8, it is clear that under the influence of the nanoadditive,
the diameters of PP microfibrils decrease, and they acquire the
correct cylindrical shape. The number of so-called “varicose”
fibers, which are formed as a result of incomplete
decomposition of liquid jets, also decreases. All this
contributes to the improvement of the mechanical properties of
the threads.

Table 1.7 — Effect of CNT and CNT/compatibilizer additives
on the mechanical properties of complex threads

Additive Strength Initial | Elonga-
content, Tex "Imodulus,| tion,
name Wt % MPa GPa %
0e3 100aBOK 4,2 170 2,8 13,3
CNT 0,1 4,0 230 3,5 10,7
CNT/ CEVA 0,1/3,0 3,3 255 3,8 13.6
CTN/C1sH3302Na | 0,1/3,0 3,1 275 45 12,7

The introduction of a compatibilizer into the nanofilled mixture
contributes to further improvement of the mechanical
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properties of the threads. At the same time, the modifying
effect depends on the chemical nature of the compatibilizer.
The binary additive CNT/sodium oleate is more effective than
CNT/CEVA - the strength and initial modulus of the threads
are higher by 12 and 25%, respectively. This is due to their
different effects on the morphology of incompatible PP/SPA
mixtures. In compositions with sodium oleate additives, PP
microfibrils quantitatively predominate over other types of
structures and have a smaller diameter, which is one of the
reasons for the increase in the performance characteristics of
complex threads.

Fug. 1.7 — Electronic microphotographs of polypropylene
microfibrils from PP/CPA/CNT blends with the following
composition: 30/70/0 (a); 29.9/70/0.1 (b)

The simultaneous use of a nanoadditive and a
compatibilizer significantly improves the hygienic properties of
modified microfibrillar threads - their hygroscopicity,
determined by the value of equilibrium water absorption,
increases by (15+20) times [68]. This is due to changes in the
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pore structure and an increase in the specific surface area of
microfibrils (Table 1.8). The values of the specific surface area
(Ssa) of unmodified microfibrils, calculated from the drying
thermograms of the water sorption-desorption process, exceed
the Ssa of traditional polypropylene textile threads by several
orders of magnitude.

Table 1.8 — Effect of CNT and CNT/compatibilizer additives
on the specific surface area and porosity of PP microfibrils

Jlobapka 06’em nop, m>/r° 1072 [Mutoma
BMICT, MaKpo-| Mikpo- yABTpANopH OBEP-
Ha3Ba mac. | " oow | mopw | 1O | MoHO- XHA,
% miap miap M/T
0e3 106aBoK 1,4 | 1,04 0,42 0,58 84,0
BHT 0,1 4,5 6,0 0.53 0.52 180,0
BHT/CEBA| 0,1/3,0 | 3,9 7,3 0,43 0,49 190,0

BHT/on.Na| 0,1/3,0 | 2,7 8,2 0,42 0,59 220,0

The introduction of CNT additives causes an increase in the
specific surface area by 2.1 times (Table 1.8). For microfibers
containing binary CNT/compatibilizer additives in their
structure, there is a further increase in Ssa. At the same time, the
volume of micro- and macropores increases, and ultrapores
almost do not change.

1.2.2.2. Nonwoven materials made of ultrafine nanofilled
fibers. Fibrous materials with filament diameters of micro- and
nanoscale dimensions demonstrate unique chemical, physical
and mechanical properties, they are characterized by a very
high surface to volume ratio, which ensures their wide
application as highly efficient sorbents, precision purification
filters, membranes for separating liquid and gaseous media,
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special and medical products, etc. A biodegradable fibrous
material with individual filament diameters from 800 nm to
9 um was obtained by electroforming, which is characterized
by ultra-high hydrophobicity and the ability to sorb oil and oil
products (their sorption reaches more than 100 grams per 1
gram of fiber) [78]. By the method of needle-free
electrospinning from industrial polymers of polyvinyl alcohol,
polyacrylonitrile  (PAN) and mixtures of PAN with
polyethylene oxide or polyethyleneimide, nanostructured
membranes were obtained, which are one of the most
promising materials for solving the global climate problem -
reducing carbon dioxide emissions into the atmosphere by
reducing its concentration in the production of energy
enterprises and subsequent utilization [90]. The introduction of
titanium dioxide nanoparticles into the structure of the
filaments gives the membranes photocatalytic properties and
expands the possibilities of their application for a wide range of
environmental problems. By the method of extrusion from a
mixture of PL/PVA of composition 40/60 wt. %, a
biodegradable fibrous material for medical purposes from
polylactide fibrils with sizes from 400 nm to 1 pm was
obtained [91].

Microfiltration using polymeric fine-fiber materials is
one of the simplest, most reliable and economically feasible
methods of purifying drinking water, atmospheric air and
technological gas and liquid media from mechanical
contaminants of micron and submicron sizes, bacteria,
microbes, etc. [92]. The main indicators characterizing the
operational properties of filter materials (FM), namely the
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retention capacity (efficiency) and permeability (specific
productivity) are determined by the size and shape of the
elements from which they are made. The average pore diameter
of the filter layers is the lower, the smaller the size of the
structural elements, and their shape is the more uniform, the
more geometrically uniform and correct the shape of the
structures forming the filter layer. In nonwoven materials
obtained by blowing or electroforming, the fibers have a
uniform distribution in diameters, however, due to their chaotic
(according to the law of chance) arrangement in the layer, there
is a probability of the formation of a certain number of pores
with diameters larger than the nominal.

The structural element of nonwovens obtained by
extraction of matrix polymer from composite films formed
from melts of the original and nanofilled PP/CPA mixtures on
a worm press through a flat-slot head of the “fishtail” type
were practically continuous PP microfibrils with diameters
from tenths of a fraction to several micrometers [57,59,60].
The advantage of FMs obtained by extraction of matrix
polymer from composite films with microfibrillar morphology
is an ordered homogeneous structure - microfibrils in the filter
layer are oriented in the direction of extrusion and are located
parallel to each other. To improve the performance of FM, the
structure of the filter layer was modified by adding nanofillers
to the mixture: pyrogenic silica (SiO2) and bifunctional
substances based on it - silver/silica (Ag/SiO2) and titanium
oxide/silica (TiO2/SiO) [57]. The introduction of all additives
contributed to an increase in the mass fraction of microfibrils
(W) (Fig. 1.8) and a decrease in their average diameter (d)
(Fig. 1.9).
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Fig. 1.8. The influence of the concentration and chemical nature of
nanoadditives on the mass fraction of microfibrils in the extrudate:
1 - Ag/SiOs; 2 — SiOy; 3 — TiO/SiO;
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Fig. 1.9. Effect of concentration and chemical nature of
nanoadditives on the average diameter of microfibrils: 1 — Ag/SiO;
2 —Si0z; 3 -TiO/SIO;
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As can be seen from Fig. 1.8 and 1.9, the effect of
nanoadditives on the morphology of the mixture depends on
their chemical nature and concentration. Nanoparticles of the
mixed oxide TiO./SiO, are more effective, compared to the
original silica and silver/silica NPs: the diameters of the fibrils
are the smallest, and their number in the extrudate is the
largest, which is due to the high polarity of the oxide. The lack
of interaction with the melt of non-polar polypropylene
promotes the migration of NPs from the volume of the PP melt
to the phase boundary of the components and localization in it.
The preferential placement of nanoadditives in the transition
layer most effectively reduces the value of the surface tension
and contributes to the formation of a finer morphology [3,93].

The curves of dependences W =f (C) and d =f (C)
have an extreme character — at the additive content of 1.0 wt. %
the average diameter of microfibrils is minimal, and their mass
fraction reaches maximum values for all investigated additives.
The decrease in the dimensional characteristics of microfibrils
is due to the compatibilizing effect of nanofillers. With an
increase in the concentration of NPs of all additives > 1.0 wt.
%, the structure coarsens. This may be due to the saturation of
the interfacial zone with the modifier. A similar effect of
reducing the surface activity of natural clay upon reaching a
certain concentration was also observed by the authors [94,95].
For the natural rubber (NR)/PP mixture, the dimensional
characteristics of the NR particles in the PP matrix decreased
linearly only at a clay content of up to 5.0 wt. % [94]. The
introduction of organomodified montmorillonite into the
PP/polystyrene mixture in an amount of (0.2+2.0) wt. %
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contributes to a decrease in the dimensional characteristics of
the microstructure in the entire concentration range. The best
result is achieved at a clay content of 0.5 wt. %: the diameter of
microfibrils decreases by 1.6 times and the uniformity of their
distribution increases by ~ 5 times [95].

Analysis of the results of assessing the efficiency of
atmospheric air filtration from mechanical particles with a size
of (0.3+1.0) um by filter material from the initial and three-
component mixtures containing 1.0 wt. % of nanofiller shows
that the introduction of nanoadditives into the structure of
polypropylene microfibrils provides an increase in the
precision and efficiency of FM (Table 1.9).

Table 1.9 — The influence of the chemical nature of

nanoadditives on the efficiency of atmospheric air purification
and the performance of filter materials

Efficiency, % (by particle size, um) Produc-

Additive tivity”
name 0,3 0,4 0,5 0,6 0,8 | 1,0 |[dm®¥m?
hour
without 78,6 | 835 | 859 | 87,8 | 91,9 | 99,4 | 4050
additives
SiO, 99,8 | 100 | 100 | 100 | 100 | 100 | 10650
Ag/SiO; 993 | 99,9 | 100 | 100 | 100 | 100 | 10840

TiO,/SiO; 99,9 100 100 100 100 | 100 | 12230
* at a pressure of 0.5 - 10° Pa

As can be seen from Table 1.9, the introduction of
nanoadditives into the structure of the filter layer provides an
increase in the retention capacity of PMs and their precision.
At the same time, the values of the purification efficiency are
indirectly correlated with the dimensional characteristics of the
structural elements of the filter layer - the retention of particles
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with a size of 0.3 microns with maximum efficiency (99.9%) is
demonstrated by PMs with mixed oxide additives. All modified
filter materials retain mechanical impurities with a size of 0.5
microns and above with an efficiency of 100%, and from the
original mixture only 85.9%. Such an improvement in one of
the main indicators of filters is due, first of all, to an increase in
the uniformity of the structure of the filter layer due to a
decrease in the average diameter of microfibrils by almost 2
times and improvement of their shape. When cleaning media
from mechanical impurities with a size of < 1.0 um through
fibrous filter materials, in addition to the so-called “sieve”
effect, a number of physicochemical processes play a
significant role, namely: the contact effect, adsorption,
Brownian diffusion [92]. Due to this, FM can retain particles
with diameters 5 times smaller than the pore size. The decisive
importance of the adsorption process is evidenced by a sharp
increase in the specific surface area to 84 m?/g for the original
and to (190+352) m?/g for nanofilled PP microfibrils,
compared to fibers formed using classical technology (Tables
1.6,1.10, 1.11).

Table 1.10 — The influence of the chemical nature of
nanoadditives on the specific surface area and hygroscopicity
of polypropylene microfibrils

Additive name  |Specific surface area, m/g| Hygroscopicity, %
without additives 84 0,17
SiO; 244 0,35
Ag/SiO, 230 0,31
TiO./SiO; 190 0,48
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Table 1.11 — Effect of silica concentration on the specific
surface area of PP microfibrils

Silica content, wt. % Specific suzrface Growth rate
area, m/g
0 84 0
0,5 197 2,3
1,0 244 2,9
3,0 307 3,7
5,0 352 4,2

The permeability of filters is determined by the pressure
drop on both sides of the filter partition and the resistance of
the material to the medium being cleaned. Studies of the
performance of FM on distilled water showed its increase for
samples in the structure of which there are nanoparticles of the
original and modified silicas (Table 1.9). This is an unexpected
result, since an increase in the precision and efficiency of
filters of any class is usually accompanied by a decrease in
their permeability. The increase in performance is obviously
due to a decrease in the hydraulic resistance of the filter layer
due to the better hydrophilicity of nanofilled PP microfibrils
(Table 1.10). An additional factor that ensures the maximum
performance of FM modified with a mixed oxide is the ability
of materials with additives of TiO2 nanoparticles to self-clean.

An effective method of regulating the structure and
operational properties of filter materials, which allows to
significantly expand the spectrum and areas of their
application, is the use of the 3D molding method (FDM
process) to obtain composite films with microfibrillar
morphology [64,65]. Studies performed using a PP/CPA
mixture have shown that when composite multilayer films are
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formed by FDM from strands with microfibrillar morphology,
they retain the structure laid down during extrusion. Nonwoven
filter material from such films can consist of several layers, in
each of which polypropylene microfibrils are oriented in one
direction and are located parallel to each other, and the layers
are perpendicular to each other (Fig. 1.10). This provides the
FM with increased mechanical performance and a uniform
ordered morphology.

11 TORRAL R e 1. A o 5 et

a) b)
Fig. 1.10 — Electronic microphotographs of the filter material:
a) surface layer, b) cross section

In [64], it was shown that the filtration efficiency and
precision of FM were increased by reducing the diameters of
microfibrils in the strands, which was achieved by changing the
size of the cells of the filtration meshes and the pressure before
the die during processing on a single-screw extruder. The
possibility of regulating the dimensional characteristics of PP
microfibrils in the filter layer by changing the type of
equipment for compounding the ingredients of the mixture
(single-screw or twin-screw extruders) was also established
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[65]. The introduction of zirconium dioxide (ZrO>)
nanoparticles into the system is an additional factor that
provides regulation of the microfibrillar structure of composite
films and filter materials based on them in the direction of
reducing the diameters of microfibrils and narrowing their
distribution. Thus, if the components are mixed on a twin-
screw extruder and 2.5 wt. % of ZrO, nanoparticles are added
to the mixture, the thinnest microfibrils are formed (the average
diameter is 640 nm) with a narrow distribution in transverse
dimensions. The results of evaluating the efficiency of
atmospheric air purification from mechanical impurities with a
size of (0.3+1.0) microns show that it depends on the diameters
of microfibrils and the number of layers (Table 1.12).

Table 1.12 — Efficiency of atmospheric air purification from
mechanical impurities

Num-| Filtration efficiency, % (by particle size, um)

Composition of
the mixture for

obtaining FM lay-
ers

ber of
03/04|05/06|07(08|09]10

2 |83,8/(884[90,1|933|994|96,6 99,7999
PP/CPA 4 1952|97,2|97,2|99,1|99,8|99,8]99,9 | 100
6 [962|975|97,9]|99,7| 100 | 100 | 100 | 100

PP/CPA/ZrO,| 2 |94,1|97,3|98,9|99,9| 100 | 100 | 100 | 100

PP/CPA * 1 |786|835|859|878|893|91,9|97,4|99,4

* FM from film obtained by extrusion method

The retention capacity of filters naturally increases with an
increase in the number of layers, which is the result of an
increase in the uniformity of the pore morphology of the
material. The reduction of microfibril diameters to nanosizes in
the filter layer obtained from the PP/CPA/ZrO, composition
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leads to a further improvement of one of the main
characteristics of the PM - a two-layer filter provides the
efficiency of gas medium purification at the level of materials
without filler, which consist of 4-6 layers.

Conclusion

Today, nanofilled fibrous synthetic materials are
industrially developed and widely used to provide products
made from them with the desired consumer effects. The
presence of substances in the nanoscale in the structure of
fibers and threads helps to improve their mechanical
properties, and in polymer mixtures enhances the self-
reinforcing effect of products made from them.

In industry, nanofilled polymeric fibrous materials are
successfully used to manufacture new types of filters capable
of self-cleaning and preventing pollution. On their basis, a
new generation of effective sorbents is created for cleaning
technological environments, including the medical industry.
In terms of their performance, they exceed ion-exchange
resins, while being 5 times cheaper than them. Such
nanocomposites absorb a wide range of metal ions from
water, destroy organic compounds, concentrate and separate
radionuclides.

Polymer modification with nanoadditives also allows
solving environmental and social problems. Composites for
water purification and new environmentally friendly adsorbents
for environmental restoration have been created on the basis of
biopolymers. The development and implementation of modern
"green" technologies allows recycling and using secondary
polymer resources.

50



Today, despite the large number of existing varieties of
polymer composites, the trend towards their further
improvement and the creation of new modern fibrous
nanofilled materials is constantly growing. Analysis of the data
presented in section 1 on the influence of nanofillers on the
performance characteristics of fibrous materials shows that one
of the determining factors is the content of modifying additives
in the structure of materials. In the technology of
multicomponent systems, the main criterion for testing
theoretical hypotheses remains the results of experiments,
which are laborious and long-term.

Based on this, an important task is to maximally reduce
the transition time from laboratory experiments to industrial
samples. An effective means of increasing the efficiency of
scientific research is the creation of software for mathematical
modeling of experiments, processing their results, and
optimizing the composition of multicomponent mixture
systems in order to obtain modern fibrous materials with
improved properties.
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CHAPTER 2. SOFTWARE FOR MATHEMATICAL
EXPERIMENTAL PLANNING AND OPTIMIZATION
OF THE COMPOSITION OF MULTICOMPONENT
SYSTEMS

In chemical technology, most of the studied objects
belong to the class of complex systems, which are
characterized by a large number of interconnected parameters.
The task of studying such systems is to establish the
dependence between the input parameters - factors and output
parameters - indicators of the quality of the system's
functioning, as well as to determine the levels of factors that
optimize its output parameters. Today, there are two
approaches to solving the problems of identification and
optimization of complex systems: deterministic and stochastic
[96]. In the first method, before solving extreme problems, a
comprehensive study of the mechanisms of the phenomenon is
carried out, on the basis of which the system is given by a
clearly deterministic model (usually in the form of a system of
differential equations). In this case, the developed
mathematical apparatus of modern control theory can be used
to solve the optimization problem. However, such systems, due
to the complexity of a comprehensive study of the mechanism
of the phenomenon, are not amenable to a complete
mathematical description in a reasonable time, which limits the
application of the deterministic approach. In the absence of
complete knowledge of the mechanism of phenomena,
identification and optimization problems, i.e., finding optimal
conditions for the course of processes or optimal selection of
the composition of multicomponent systems, are solved using
experimental and statistical methods.
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In the case of experimental and statistical studies of the
object, the relationship between the input and output
parameters of the system is usually described by a polynomial.
To estimate the coefficients of the polynomial that
approximates the real dependence (response function ), it is
necessary to have statistical data that characterize the state of
the system during operation. This information can be obtained
by passive or active experiment (setting up experiments at
certain points Xy = (X1, X2u, -, Xk) (U = 1,2,..N) of the
permissible region of the space of controlled input parameters.
Provided that the influence of uncontrolled input parameters is
insignificant compared to controlled ones, the system under
study can be described by the following model:

EW)=p(X)+£ (2.1)

Today, in experimental and statistical research, the
method of mathematical planning of an experiment is widely
used, the essence of which is to select the number of
experiments and the conditions for their conduct, necessary and
sufficient to solve a given problem with the required accuracy,
methods for mathematical processing of their results and
decision-making. In experimental planning, the experiment
itself is considered as an object of research and optimization, in
which optimal control of the experiment is carried out.
Depending on the information about the system under study,
the research strategy changes in the direction of its
optimization for each specific stage. Experimental planning is a
powerful tool in conducting research and optimizing complex
systems, which allows you to significantly reduce the number
of experiments, and, thus, material costs and terms of
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conducting experiments, makes it possible to obtain
mathematical models and quantitative assessments of the
influence of various factors on the processes under study. The
use of experimental planning methods, in comparison with
traditional methods, allows you to increase the efficiency of
scientific research by up to 10 times. A mathematical model is
a system of mathematical relationships - formulas, functions,
equations that describe the object under study. Analytical
recording of the property—composition dependence has a
number of advantages over geometric methods of spatial
representation of complex surfaces for multicomponent
systems, namely: determination of property indicators directly
by calculation, its versatility, the possibility of application in
many fields of research (chemistry and chemical technology,
metallurgy, the building materials industry, medicine, biology,
agriculture, etc.). In addition, the problem is formalized, and
the obtained dependences can be calculated using software.

2.1. Basic concepts of the mathematical design of
experiments method

2.1.1. Factors, optimization parameters and models.
During experiments, they usually deal with objects of research,
which can be: technological processes, various compositions,
products, etc. For them, input parameters are distinguished -
controlled factors xi, x2, ..., Xxp, corresponding to the effects
on the system, and output (quantitative characteristics of the
research goal) - optimization parameters (criteria) y1, y2, ..., ).
In this case, the model of the research object can be represented
as a cybernetic system with k+n+| inputs and m outputs
(Fig. 2.1) [96].
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Fig. 2.1 — Model of the research object

Each of the output parameters depends on the state of
the controlled part of the inputs, which is determined by the
k-dimensional vector X = (x1, x2, .., x); the controlled
uncontrolled part of the inputs, which is described by the
n-dimensional vector Z = (z1, Z2 ...zn); the uncontrolled part,
which is determined by the I-dimensional vector
E = (ey, ez.. e), and the outputs, i.e. the numerical
characteristics of the research objectives, are the optimization
parameters (criteria) y1, y2, ..., yi; ¥y = F (X,Z,E). During the
experiments, each factor can take one of several values, called
levels. A fixed set of factor levels determines one of the
possible states of the cybernetic system. At the same time, this
set represents the conditions for conducting one of the possible
experiments. Each fixed set of factor levels corresponds to a
certain point in a multidimensional space, called the factor
space. Experiments cannot be implemented at all points of the
factor space, but only at those that belong to the admissible
region of the factor space G (Fig. 2.2).

The system reacts differently to different sets of factor
levels. At the same time, there is a certain relationship between
the factor levels and the reaction (response) of the system. The
function w, which connects the optimization parameter with the
factors, is called the response function, and the geometric
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image corresponding to the response is the response surface
(Fig. 2.3).
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Fig. 2.3. Response surface
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The form of the dependencies y; for the system under
study is unknown in advance, therefore it is necessary to obtain
approximate equalities based on experimental data:

Vi=v;(X, X0 %), j=1,2,.,1L

The experiment must be conducted in such a way that,
provided that the minimum number of experiments is
performed, varying the values of the independent variables
according to specially formulated rules, a mathematical model
of the system can be constructed and the optimal values of its
properties can be found.

The selection of factors, optimization parameters and
models takes place taking into account the purpose of the study
and the existing conditions for conducting the experiment.
Factors are variables that acquire a certain value at some point
in time. They determine both the object itself and its state.
There are quantitative and qualitative factors. Quantitative
factors are variables that can be evaluated quantitatively,
namely: measured, weighed, etc.; qualitative factors do not
have a numerical assessment, but for them it is possible to
construct a conditional scale that carries out coding, establishes
a correspondence between the levels of the qualitative factor
and the numbers of the natural series. Factors can also be
controlled and uncontrolled. Controlled are such input
variables, the values of which in the experiment are known at
each point in time. Thus, when studying a technological
process, all variables that determine the state of the process and
the values of which can be estimated using appropriate
measuring instruments are controlled. Controlled variables, in
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turn, can be divided into controlled and uncontrolled.
Controlled factors are those whose values can be purposefully
varied during the experiment. Factors for which such a change
is impossible are called uncontrolled. These are input variables
whose values cannot be estimated during the experiment, or
those that have an impact on the results of the experiment, or
even factors about the existence of which the experimenter has
no information.

The characteristic of the goal of an experiment or
research, given quantitatively, is called an optimization
parameter  (optimization criterion, objective function).
Optimization parameters can be economic (profit, cost,
profitability, experiment costs, etc.), technical and economic
(productivity, stability, reliability, efficiency, etc.), technical
and technological (product vyield, physical, mechanical,
physicochemical, medical and biological characteristics).

A number of requirements are put forward for the
optimization parameter: effectiveness in terms of achieving the
goal (i.e., the optimization parameter should evaluate the
functioning of the system as a whole, and not its individual
subsystems); universality (the ability to comprehensively
characterize the object of study); quantitative expression in a
single number; the presence of a physical essence; simplicity
and accessibility of calculation. The number of values that an
optimization parameter can take is called its definition domain;
they can be continuous and discrete, limited and unlimited. The
researcher must be able to determine the optimization
parameter for any possible combination of selected levels of
factors.
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For planning experiments, models in the form of
algebraic polynomials have found the greatest application. To
choose a specific model, it is necessary to formulate certain
requirements. These include adequacy (the ability of the model
to predict the results of the experiment in a certain area with
the required accuracy); meaningfulness (the model must well
explain already known facts, identify new ones and predict the
further behavior of the system); simplicity (the simpler the
model, the better it is, other things being equal).

Depending on the problem statement, different models
can be chosen. Explicit functional dependencies of the form are
often used:

y =10, %0 X0, By Bore-Bar €) (2.2)
where: f — some function called the regression function;
X1 X5,.-. X, — independent variables (factors); fB,, 5,....5,

— dependence parameters; & — random component. The latter is
introduced into the model when the data show noticeable
variability of a random nature. It is very often assumed that &
enters model (2.2) additively, then it takes the form:

y = f(xl,xz,...xp,ﬂl,ﬁz,...ﬁm)+g (2.3)
Relations (2.2), (2.3) are called regression models.
For independent factors X, X,,...X, the researcher

chooses certain values, and experimentally obtains the
corresponding values Y . Then (2.3) passes into a system of

relations from which the parameters 4, z,,..5, are
determined. Due to the presence of a random component, the
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B, B3, parameters can only be estimated (and not precisely

determined). In this case, estimates b,,b,,..b, of the
corresponding parameters are obtained, and instead of model
(2.3) in reality, an approximation ¥ to it is operated:

Y= %,.X,,0,b,,..0,).
If the function f is a polynomial, then by,b,,...b, are called
regression coefficients, and the function takes the form:

g =Dy + D X + D bixx; +... (2.4)
i i

2.2. Mathematical planning of an experiment

Solving problems using mathematical methods is
carried out by formulating the problem, choosing a research
method, a mathematical model and analyzing the result
obtained. The mathematical formulation of the problem is
presented in the form of numbers, geometric shapes, functions,
systems of equations, etc.

The main stages of mathematical planning are as
follows: setting the problem, defining the object and purpose of
the research, studying objects, etc.; choosing the type of
mathematical model (often several models are built and the
best one is chosen); describing the transformation of input
signals into output characteristics of the object (for example,
using algebraic dependencies); studying the quality of the
developed models [96].

After selecting the type of model, i.e. the type of
dependence of y on x and writing the corresponding equation,
in the area of the factor space allocated for research, an
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experiment is planned. Then, experiments are carried out to
estimate the numerical values of the constants (coefficients) of
this equation. Since the polynomial (2.4) has C%=q coefficients
that need to be determined, the experiment plan

Xiu Xz X1

X X X
D= 12 22 k2

Xin+ Xon Xun

must contain at least Cl+q different experimental points Xy =
(X1uy X2u, sy Xku), U=1,2,...N.

2.2.1. Determination of regression coefficients by the
least squares method. According to the results of the
experiment on the object of study, a mathematical model of a
certain form is obtained. In particular, it can be a regression
model with a regression function in the form of a polynomial
of the appropriate degree - the so-called polynomial regression
model. The quality of the regression model's approximation to
the real object depends not only on the experimental data, but
also on the method of processing the results used to build the
model. For this purpose, the least squares method (LSM) is
often chosen. In this case, it is assumed that n experiments are
performed, in each of which the vector of independent factors
X = (X1,...Xp) is given certain values. As a result, some values
of the dependent variable y are obtained. Provided that
X = (xi1,..., x}p) is a set of values of the dependent variables that
were given to them in the i-th experiment, then yi are the
corresponding values of the dependent variable (i = 1,2,..., n).
To estimate the parameter vector g = (fu,..., fr), We choose
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such a vector b = (by,..., bm) for which the sum S(f) (2.5) takes
on a minimum value by g € R™

S(B) = [y. - f ﬂ)] (2:5)

where: R™ — m-dlmen3|onal Euclidean space.

If the regression function f is differentiable with respect
to the parameters (fi,...,[0m), then the necessary condition for
the minimum of S(/) is that the equalities

M=O, j=12,..,m. (2.6)
op;
System (2.6) consists of equations, the number of which is
equal to the number of unknowns of the system — coefficients
b,,b,,...,b, , and is called a system of normal equations or a
normal system.

The solution to the problem of minimizing the function
S(p)is given below for a special case of model (2.6) provided
that p = 1, the vector of independent variables x is a scalar
variable, and m = 2. In this case, instead of the notations f1, /%,
the more common f, (i will be used for the dependence
parameters. It is also assumed that the function f is linear in the
parameters fo, f1, i.e. in the expression of the function f, the
variable x is present only in power 1. Then the regression
function f takes the form:

f0) =5+ A x, (2.7)
and, thus, the following partial case of model (2.6) will be
investigated:

=P+ fixte, (2.8)
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where: x and y — respectively, independent and dependent
variables, fo, /1 — model parameters, € — random component of
the model

Equation (2.8) is called simple linear regression.

To estimate the parameters fo, f1 from experimental
data, it is assumed that the independent variable x in the
experiments takes the values xi,..., X», and the dependent
variable y — respectively, yi,..., yn. In this case, the problem of
minimizing the function S(f) takes the form:

S (B=S(po, f) = § [yi—(ﬁ’o+ﬂ1xi)]2 —min, (2.9)
i=1

where the minimum is taken for all values of fo, p1 for fixed
X1,..., Xn and Ya,..., Yn. If the solution to problem (2.9) is
denoted by (bo, b1), and the corresponding estimate of the
regression function (2.7) is ¥, then

¥ =3(x) =bo + b1 X (2.10).
Fig. 2.4 schematically depicts the regression line (2.10) and a
set of experimental points (xi, yi), as well as vertical segments
(deviations) connecting the indicated points and the line. These
deviations are measured by the differences of the ordinates
corresponding to the experimental points and the points of the
approximating line for the values x = x1,..., X, that is, by the
algebraic values of the vertical segments shown in Fig. 2.4. In
this case, the sum of the squares of the lengths of such
segments will be the smallest possible. The value A is the
slope, and /o is the free member of the line (the segment on
the ordinate axis at x = 0), and by, bo are their estimates from
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the experimental data. They are, respectively, the slope and the
free member of the equation of the line (2.10).

P

Line
y=y(x)

Fig. 2.4. Regression line with vertical deviations

To solve problem (2.9), calculate the partial derivatives
with respect to fo, 1 of the function S = S(f, £1), which
have the following form:

n
0810pp=-2 3 (Yi—fo— i),

i=1
n
0S1op=-2 zlxl- Vi = fo— P X).
1=
By equating the found derivatives to zero and performing
appropriate simplifications, we obtain a system of two
equations with unknown parameters fo, fi:
bon+ L xi=2Yi
LoXXi+ B X% =2 X i, (2.11)
In equations (2.11), to simplify the notation, the summation
indices are omitted (here and in similar situations, the sign X
means summation over all possible values of the index, in this
case from 1 to n). This system is a partial case of the normal
equations (2.6). The solution of the normal system (2.11) is the
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solution to the minimization problem (2.9). The system of
equations (2.11) is always consistent, regardless of whether its
determinant is zero or not. The equality of zero of the specified
determinant can occur only in the case when all observations
are made at only one value of x. In this case, the specified
system has many solutions, each of which can be found from
the equation:
fon+ pfinx =2, (2.12)

Provided that the main determinant of the system of
equations (2.11) is not equal to zero, the system has a unique
solution, for which the following notation is introduced:
Siy = Z(Xi— X)(Vi— V), Sx=Z(xi— X)% Syy =Z(yi— ¥ )%
where summation indices are omitted.

In the case where y= (yit+...+ yn)/n), Ta

X= (Xa+...+ xn)/n are the arithmetic mean values of the
independent and dependent variables, the solution of system
(2.11) takes the form:
b1 = Sxy/ Sxx, (2.13)
Do = y—bl)_c. (2.14)

Thus, in the case of simple linear regression, the
relationship model between the objective function y and the
independent variable X is given by equality (2.10), in which the
coefficients bo, by are determined by equations (2.13), (2.14).

Provided that certain probability assumptions about the
nature of the sample data Xi,..., Xn and yi,..., yn are met,
then the model (2.10) also has the corresponding properties of
a probabilistic nature. This makes it possible to assess the
quality of the constructed model, find confidence intervals for
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its values, and perform forecasting using regression analysis
and planning of experiments.

2.2.2. Model adequacy checking. After determining the
coefficients of the developed mathematical model (2.10), the
hypothesis of the adequacy of the regression equation is tested,
I.e., the possibility of using the obtained equation for further
research is determined, or the need to build another model is
determined. The procedures for this test are conventionally
divided into analytical and graphical methods. For analytical
testing of the adequacy of the model, the difference between
the experimental value and the response value predicted by the
regression equation at some points of the factor space, which
can be selected from the points of the plan (for unsaturated
plans), or from additional control points, is studied. Control
points are usually chosen either in the area of greatest interest,
or placed in such a way that observations in them can be used
to construct a polynomial of higher degree.

The implementation of the analytical method involves
making more than one observation at least at one of the points
{x;}. Provided that x1, Xo,..., Xn are observation points, and n >
1, they are all considered different.

The dependent variable y, up to the random additive
error & can be represented as a linear combination of factor
variables (independent variables, regressors) Xo, X1,..., Xp—1:

Y=foXot ...t fp-1X-1+¢ (2.15)
where:  fh,..., fp-1 — coefficients of the mathematical
model

As a result, a sample of size n was made, which is a
set of experimentally obtained n sets of numbers of the form:
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(Xi0,....X i,p-1, ¥i), i = 1,2,...,n, where: X is the value of the jth
regressor (j-th independent variable) at the i-th observation,
yi - 1S the corresponding value of the dependent variable y. The
error value ¢ at the i-th observation is denoted by &;.

To check the adequacy of a linear model, a fairly
common method is to compare estimates of error variances
obtained, on the one hand, using this model, and on the other
hand, independently. This is equivalent to testing some linear
hypothesis by calculating and analyzing the corresponding
Fisher's F-ratio.

At the first stage, the experimental data were marked
with the letter xi for the i-th observation point (row vector) of
the independent variable, i.e. X; = (Xio, ..., Xip1), i = 1, 2,..., Nn.
Since this method requires the presence of several observations
for y at least at one of the points Xx;, it is assumed that this
requirement is met, i.e. among the points xi there are some that
are repeated. In this case, X1, Xi.., Xm — are different
observation points, and at least in one of them the number of
observations is greater than 1. The specified F-statistic has the
following form:

F== 2.16
2 (2.16)
rei sE=——>n(§, -,
1 m_pi:1 i i i ’
1 &G
52 = V)2
2 n_m;;(yu y|)
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Yieo <o Yin,» i = L,...., m — the values of the

output variable observed at the point x = x'; n. - number of
experiments at the i-th point

Provided that m > p, the relation of the form 2_12
2
(a variant from the set of F-relations) has a Fisher distribution
F(m-p, n-m) [33,97]. According to the general provisions,
the hypothesis of the adequacy of the model is not accepted at
the significance level « if the specified relation exceeds the
quantile of the level (1-«) of the Fisher distribution. Otherwise,
the hypothesis is accepted. To check the adequacy of the model
by the described method, the software developed by us can be
used [33].
2.2.3. Full and fractional factor experiments. In
experimental studies, each of the different values that a
variable X; takes is called a level of that variable. The number

of different levels of a factor X, is denoted by S. An

experiment in which the levels of each factor are combined
with all levels of the other factors is called a full factor
experiment (FFE). A full factor experiment is written as:
S, xS, x..xS,, since the number of different points or

different experiments is N, =S, xS, x...xS, . An experimental

plan is called an incomplete or fractional factor plan if the
number of different points is N, <S, xS, x...x S, . Provided that

in the response function
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n=T(X, Xp0 X,) (2.17)
the number of different values that a variable X, (i=12,...,k)
can take in all experiments is two, i.e. §;=2. In other words, the
variable X; in each experiment takes one of two possible values
(X, and X,), or varies at two levels. If X, < X,, then X, is
called the upper level of the factor X,, and X, is called the
lower level. To simplify the equations, coded variables are

o = X=X i=12,...K,
i S

introduced:
where: xioz% i=12,..,k;

s = Xe=Xu j=12..K.
2

The coded variable X;(i=12,...,k) in each experiment can

take the values 1 or -1, which are its upper and lower levels.
Without loss of generality, we can assume that expression
(2.17) with variables X,,X,,..., X, presented in coded variables

form has the following form:

7= F(X, Xy X, ) (2.18)
In the case when in expression (2.17) the number of
independent variables k=2, then 7= f(x,x,). All possible

combinations of levels of variable X, i X, in a full factor
experiment 22 are presented in Table 2.1
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Table 2.1 — Matrix of plan FFE 22

Experim | Matrix of independent R h
ent variables esearc Observation
number X0 X1 X2 X1 X2 option
1 1 2] a1 @) Y;
2 1 1 -1 -1 a Y2
3 1 -1 1 -1 b Ys
4 1 1 1 1 ab Y,

In the table, the symbol (1) means that both factors are in the
lower level; a — x1 in the upper level; b — x21 in the upper level,
ab — both in the upper level. This is a full factor experiment 22,
Often the response function has the form:
N =Py + X+ BoXy + PioXiX (2.19)
A schematic representation of the FFE 22 is shown in Fig. 2.5.
X2

-~

(-1:1) (1:1)

X1

v

(-1:-1) (1:-1)

Fig. 2.5 — A schematic representation of the FFE 22

From Fig. 2.5 it is seen that the observations i, yo, Vs,
ys are made at the vertices of the square. The coefficients of
equation (2.19) can be calculated by the method of least
squares.
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The response function of FFE 23 has the form:
n = T(x,%,,X;). All different combinations of variable levels

are presented in Table 2.2.
Table 2.2 — Matrix of plan FFE 23

Matrix of independent variables
x| x| xe [ Rese_a reh Observation
Xo | X1 Xz (X3 || g 2 option
X3

111221 ]1]1]1 @) Y1
11 (-1 )-1]-1]-1]1]1 A \Z
1 /11 ]-1]-1]1]-1]1 B Y3
111 -1]1|-1]-1]|-1 ab Ya
1 /111 ]1]-1]-1]1 C Vs
1111 |-1]1]-1]|-1 ac Ve
1 /-1 (1 [1]-1|-1]1]-1 bc y7
1 ]1[1]1]1]1]1]1 abc Ys

The response function is calculated from the equation:
=P+ D BiXi+ D ByXiX; + PragXa Xy X, (2.20)

1<i<3 1<i<j<3
The coefficients (2.20) are determined by the least squares
method.

In a full factor experiment 2% the number of
experiments is N =2%. As the number of variables k
increases, the number of experiments N increases rapidly, so
for large values of k, the implementation of FFE 2* becomes
practically impossible. For FFE 2% experiments the response
function has the following form:

n=p+ Zﬂixi + Zﬂijxixj Fot By (K Xp X (2.21)

1<i<k 1<i< j<k
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With the growth of N there is an increase in the number of
interactions and their order in (2.21), but often in the specified
equation the effects of high-order interactions can be neglected,
or it is known a priori that some of them are absent. The
number of experiments to find estimates of the unknown
coefficients of such an equation can be significantly reduced.
This is achieved by using fractional factor experiments. If in
FFE 2% observations are carried out at all vertices of the
Kk -dimensional hypercube, then when using fractional plans -
only at some of them.

Below is an example of constructing a fractional

replica, in which the response function has the form:
n=p5 + Z:Bixi (2.22)
1<i<3

In this expression, the effects of pair and triple interactions are

absent Pz =Pz = Pos =Pz =0

If FFE 23is used to estimate the unknown coefficients,
then N =8. However, the number of experiments can be
reduced, since in (2.22) there are no interaction effects. For this
purpose, a plan is constructed, the matrix of which has the

form:
Xl XZ X3
-1 -1 1
1 -1 -1 (2.23)
D=
-1 1 -1
1 1 1

matpuus [IOE 22
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The matrix D is obtained from the matrix FFE 2° by deleting
individual rows from it: (1; -1; 1), (-1;1; 1), (-1;-1; -1),
(1; 1; -1). The constructed fractional factor experiment (FFE)
design (2.23) is a half-replica of FFE 2. For its recording, the
notation is used: 231, where 2 is the number of levels; 3 is the
number of variables; N = 23-1 is the number of experiments.
The code designation of the half-replica: c; a; B; aBc. As can be
seen from (2.23), the features of the design of the design are
that the variable x3 at the points of the design satisfies the so-
called generating relation::
Xy = X; X, (2.24)

Using this equation, it is easy to construct (2.23) — first the
FFE 22, and then the column vector xs, which corresponds to
(2.24).

2.3. Planning an experiment on composition—
property diagrams

2.3.1. Simplex grid plans. In chemical technology, in
particular in the technology of polymer composite materials,
most of the objects under study belong to the class of complex
experimental design systems, which are mixtures of

different components. The variables X; (i =1,2,...,q) of

such systems are the proportions (relative content) of the i-th
components of the mixture and satisfy the following condition
[96,113,114]:
D% =1, (x 20) (2.25)
1<i<q
The locus of points satisfying condition (2.25) is a
(g-1)-dimensional regular simplex, which is a triangle for g=3,
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a tetrahedron for g=4, etc. Each point of such a simplex
corresponds to a mixture of a certain composition, and,
conversely, any combination of the relative contents of q
components corresponds to a specific point of the simplex.
Since  when planning experiments and constructing
composition—property diagrams one has to operate with the
factor space in the form of simplexes, it is advisable to switch
from ordinary Cartesian coordinates to a special simplex
system, in which the relative contents of each component are
plotted along the corresponding faces of the simplex [96,98].

At the vertices of the simplex each X;= 1, and further - are

determined by the lines (or surfaces) of the level parallel to the
opposite side (or face) of the simplex. So, for example, for a
three-component mixture, the simplex is an equilateral triangle
X1, X2, x3 (Fig. 2.6).

X2

X1 X3

Puc. 2.6 — CuMIiekcHa cuctemMa KOOpAUHAT

The value of the variable x; at the vertex x; is equal to one, and
on the side x2xs it is zero.

The problem of constructing a mathematical model of
composition—property can be solved by writing the desired
function as a polynomial of degree n in canonical form:
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j- Zﬂ.x.+2{ Al - }*Z{ 2. SR X}

1<i<q m=2 | I<i<j<q m=3
(2.26)

where: S; +S, +...+S, =N.
Polynomials of this form (so-called reduced polynomials) are

obtained from ordinary polynomials of the corresponding
degree taking into account the relation (2.25) and contain

Cq.na Coefficients. For example, a polynomial of the second

degree, which in the general case is described by the equation:
§ =by +b,X, +0,%, +b,x; +0,% X, +byX X, +b,5%%, +by % +by,x +bix’
taking into account the ratio x, +X, +X, =1 will take the
form:
Y =BX+ BoXy + BiXa + BioXiXo + BiaXiXs + BogXy X

To estimate the coefficients of the reduced polynomial
(2.26), plans were proposed that provide a uniform distribution
of experimental points over a (g-1)-dimensional simplex. The

points of such plans are the nodes of {q, n}-simplex grids, in
which (n+1) equally spaced levels in the interval from 0 to 1

(xi =0, %%1} are used for each factor (component) and

various combinations of them are taken. Thus, the number of

such combinations C! is equal to the number of

g+n-1
coefficients in the reduced polynomial (2.26). The set of points
(Ko Xy veees Xgu ), u=12..,N=C!, ,,  Where
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X,, :O,%’%’...,l, > x;, =1 forms a saturated

1<i=q
simplex-grid {q, n}- plan.
Examples of {q, n}-grids are shown in Fig. 2.7.

i i linear quadratic

Fig. 2.7 — Types of {q, n}-grids

Each grid corresponds to a plan matrix:

1 00
D=|0 1 0] -forlinear grid;
0 01
1 0 0
0 1 0
D 0 0 1 | -forquadratic grid;
1/2 1/2 0
1/2 0 1/2
0 1/2 1/2
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1 0
0 1
0 0
D=|1/2 1/2
172 0 1/2

0 1/2 1/2
1/3 1/3 1/3

- for incomplete cubic grid;

o O O

2/3 1/3

1/3 2/3

2/3 0 1/3

/3 0 2/3
0 2/3 1/3
0 1/3 2/3
1/3 1/3 1/3

- for cubic grid.

o
o O O O

2.3.1.1. Planning with a preliminary transformation of the
simplex sub-area. When solving g-component mixed
problems, it is often necessary to investigate only a
(g-1)-dimensional ~ simplex  subdomain  of the full
(g-1)-dimensional domain. The subdomain can be given by
restrictions on the domain of change of all components, for
example, x,>q, (i = 1, 2, ..., q). In this case, direct
application of the methods described above is impossible, since
the condition is violated, therefore, a transformation of the
subdomain is first performed by transition to a new coordinate

system (21,2, 2, ) (Fig. 2.8) [96,113,114].
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X2 Zo

/
z
Z3 !

X3 X1 Z3 Z

Fig. 2.8 — Transformation of a simplex sub-area

For the transformed sub-area, the equalities hold:
0<z,<1,i=1,2,..,0 z{V +z" +..+z" =1, (2.27)
where: u — any point of the sub-area.
The transformation dependence between the coordinate
systems (xi,xz,...,xq) and (zl,zz,...,zq), which corresponds to

condition (2.27), is given by the following matrix equation
X = AZ, in expanded form:

xW Ix®P x® L x@9) zW
X0 [x® x@ . x@ |z@
= ' (2.29)
W [y® 5@ @| |,
Xq Xq Xq Xq Zq

The elements of the matrix A are: — coordinates of the vertices
of the simplex x and z" — initial and new coordinates of

the u-th transformed point. All plans that were used for the
complete simplex can be constructed with respect to the new
variables z, but the implementation of the experiment in such
conditional plans is impossible. To conduct research, it is
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necessary to represent the experimental compositions of the
systems in x-coordinates, that is, to make a transition according
to the conditions (2.28).

2.3.2. Simplex-centroid plans. In simplex-lattice plans,
experimental points are located mainly on the periphery of the
simplex. As already noted, for a three-component composition,
the simplex is an equilateral triangle, each vertex of which is an
independent component of the mixture; the points contained on
the edges of the triangle correspond to binary systems of pairs
of ingredients, the points inside the simplex are the
composition of the mixture from all three components. For a
four-component system, the region of admissible variables has
the form of a tetrahedron. Its faces correspond to simplices of
ternary mixtures of three components, and the points inside are
a mixture of four ingredients. In simplex-lattice plans, for
constructing models of degree n, the experimental points are
located in the simplex symmetrically, using for each
component X (i :J,_q) g+1 equidistant levels ranging from
0 to 1: X, =0; 1/n;2/n;...; n/n=1. All possible
combinations of these levels are plans or simplex lattices. Such
plans are considered fully saturated, i.e. the number of
experiments in them is equal to the number of unknown
coefficients of the corresponding model. In simplex-Ilattice
plans, the experimental points are usually located on the
periphery of the simplex. Some of these plans, for example,
first- and second-order grids, do not contain any experimental
points inside the studied region, i.e. those that correspond to
the composition of all components. The polynomial used,
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adequately describing the results of experiments on the faces of
the simplex, can give significant deviations for the central
regions that correspond to mixtures of all g components of the
studied system. Based on this, another arrangement of
experimental points was proposed - simplex-centroid
experimental design [96]. In simplex-lattice plans, the
experiments are implemented in N = 29 — 1 experimental
points, q of which are points containing one non-zero
component; C% - points containing two non-zero components
(binary mixtures); C%; — points containing three non-zero
components (ternary mixtures), etc., and one point containing
all the components of the mixture. The simplex-centroid plan
contains points with coordinates (1,0,...,0); (1/2,1/2,0...,0); ...;
(1/q, 1/q... 1/g), as well as all points that can be obtained by
permuting their coordinates. Thus, the experimental points are
placed at the vertices of the simplex, the midpoints of the sides,
the centers of faces of different dimensions, and one point is in
the center of the simplex.

Unlike simplex-grid plans, in which for a given q there
is a set of {q, n}-grids (n = 1,2,...), there is a unique simplex-
centroid plan for a fixed g. The approximating polynomial can
be chosen as follows:

n

n
Y= BX+ DB XX+ X Bk XX+t Brp XX X
m=3

1<i<q 1<i<j<q
(2.29)
It contains as many coefficients as there are points used in the
simplex-centroid plan, i.e. these coefficients are uniquely
determined by the responses at 2%-1 points of such a plan..
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2.4.  Optimization of the composition of
multicomponent systems

A significant number of experimental problems in
chemistry and chemical technology are formulated as problems
of determining the optimal process conditions, the optimal
composition of the composition, etc. The research process is
usually divided into separate stages. The information obtained
after each stage determines the further strategy of the
experiment. Thus, the possibility of optimal control of the
experiment arises.

At the first stage of solving the optimization problem, it
is necessary to clearly formulate it, as well as to make
transformations and simplifications in order to bring it to a
form convenient for further solution. The optimization problem
of processes characterized by several responses is usually
reduced to a single-criterion optimization problem with
constraints in the form of equality or inequality. Depending on
the form of the response surface and the nature of the
constraints, it is proposed to wuse uncertain Lagrange
multipliers, linear and nonlinear programming, ridge analysis,
etc. for optimization [99]. The disadvantages of these methods
of solving the optimization problem include the complexity of
the calculation. In particular, provided that the response surface
is described by second-order polynomials, solving the problem
for a conditional extremum using uncertain Lagrange
multipliers leads to the need to solve a system of nonlinear
equations.

In the general case, the multi-criteria optimization
problem is formulated as follows [100]:
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m;n{fl(i), f,(X), .., f.(X)}, XeS (2.30)

where: f :R" > R — are k(k>2) of target functions

In this case, the target functions that are investigated for the
maximum are transformed into functions that are investigated
for the minimum:

min (y) = —max(y) (2.31)
The solution vector X:(xl, Xy, oy X, )T belongs to the non-

empty domain of definition S.

The solution of a multi-criteria optimization problem
consists in finding a vector of variables that will satisfy the
imposed constraints and optimize a vector function whose
elements correspond to the objective functions. They are a
mathematical description of the satisfaction criterion and, as a
rule, can conflict with each other. Thus, the optimization
problem is to find a solution at which the values of the
objective functions would be acceptable for the formulation of
the problem..

In the process of solving multi-criteria problems, a
number of problems are solved [100]:

- the problem of normalization - individual criteria, as a
rule, have different scales and units of measurement, which
makes it impossible to directly compare them;

- the problem of taking into account the priority of
criteria - they often have different significance, which is why it
is necessary to find a mathematical definition of priority and
the degree of its influence on solving the problem;
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- the problem of determining the compromise region -
arises when solving multi-dimensional nonlinear problems.

All decision-making problems are complex and multi-
objective, since when choosing the best option, many different
requirements must be taken into account, which may conflict
with each other. Based on this, a multi-objective problem is
often reduced to a single-objective problem, that is, one is
formulated that includes one criterion, and one or more
additional constraints are added to the original system of
constraints.

There is no universal method for solving multi-criteria
mathematical programming problems. The choice and correct
use of any of the known methods is left to the decision-maker.
The most common heuristic method for solving a particular
multi-criteria problem is to reduce it to the solution of some
scalar (single-criteria) problem, the objective function of which
is most often a certain combination of existing criteria
f,, f,, .., f. . This method is called scalarization of a multi-

criteria problem. Depending on the method of combining
several existing criteria into a single scalar one, one or another
type of scalarization is obtained, which is chosen based on the
essence of the problem being solved and some additional
information about the advantages.

The simplest method of scalarization is based on the use
of the so-called linear convolution of criteria:

F(x)= Zi:ai - £,(x) = min
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20, i=1 .., m, iai =1 (2.32)
i=1

In practice, the scalarization process begins with the selection
of linear convolution coefficients, i.e. numbers «,, i=1,..,m.

These numbers are interpreted as “importance coefficients” of
the corresponding criteria, the more important of which is
assigned a larger coefficient in the linear convolution of
criteria, and the less important one is assigned a lower one.
This method is convenient to use; it allows you to preserve the
linearity of the output functions, i.e. in the case when the initial
criteria are linear, the final criterion will also be linear.

Models describing a single-criteria problem are much
simpler and can be solved by one of the known methods and
used to optimize multicomponent systems. In order to
determine the optimal composition of the mixture, it is
necessary to solve the so-called conditional optimization
problem, which is associated with optimization under variable
constraints. These constraints reduce the size of the region in
which the optimum is located. The optimization process
becomes more complicated, since in the presence of constraints
it is impossible to use the applied optimality conditions. In this
case, even the basic conditions according to which the
optimum should be achieved at a stationary point may be
violated.

To move from a conditional optimization problem with
constraints to an unconstrained problem, there are a number of
methods: the method of indefinite Lagrange multipliers, the
method of penalty functions, the method of barrier functions,
etc. If the method of penalty functions is used, it is necessary
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that it “penalizes” the function Z for violating the constraints
(i.e., increases its value). In this case, the minimum of the
function Z will be inside the constraint region. There may be

several penalty functions P(X) that satisfy this condition. The
minimization problem consists in minimizing the function
Z = f(x) under the constraints ¢ (x)>0, j=12,..,m, then

the function P(x) takes the form:
& 1
P(x)=r->—, (2:33)
JZ=1: c;(x)
where: r — quite a small value
By applying one of the above methods, we obtain an
unconditional optimization problem, which is formulated as

follows: find the minimum of the function f(x), where xeR"
in the absence of restrictions on x, and f(x) is a scalar
objective function, continuously differentiable [100,101].

When solving these problems, the researcher must take
into account the following factors:

- the nature of the objective function of the problem
being solved - single or multi-extreme;

- the possibility of obtaining information about the
derivatives of the objective function during the optimization
process;

- the presence of different approaches to organizing an
iterative procedure for finding the optimum (methods based on
the iterative movement of variables in a direction determined
by one or another method).
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Several methods can be used to perform unconditional
optimization: direct search, first-order, second-order (Newton
methods), random search, gradient, etc. In direct search
methods for the minimum of the objective function (or zero-
order methods), information is used only about the value of the
function. Many of them do not have sufficient theoretical
justification and are built on the basis of heuristic
considerations. Random search methods implement an iterative
process of moving optimization variables in space using
random directions. The advantage of these methods is a large
range of possible directions of movement. The gradient method
with step splitting is most often used, since it is quite simple
and is characterized by good convergence.

Thus, to optimize the content of ingredients in a
multicomponent mixture, it is necessary to conduct multi-
criteria optimization of the system taking into account several
conflicting objective functions. To do this, the multi-criteria
problem is reduced to a single-criteria problem, the conditional
optimization problem is transformed into an unconditional
optimization problem and it is solved by one of the specified
methods.

Today, one of the most widely used methods for solving
the problem of optimizing processes with a large number of
responses is the general optimization criterion proposed by
Harrington - the so-called generalized desirability function
D [99]. To find it, the found response values are converted into
a dimensionless desirability scale d. The construction of a
desirability scale, which establishes the relationship between
the response value y and the corresponding value d (partial
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desirability function), is fundamentally subjective, that is, one
that reflects the researcher's attitude to individual responses.

It is convenient to create a desirability scale using the
method of quantitative assessments with an interval of
desirability values from zero to one, but other options are also
possible. The value d = 0 (or D = 0) corresponds to an
absolutely unsuitable response value, and d = 1 (D = 1) is the
best response value, and its further improvement is either
impossible or of no interest. Intermediate desirability values
and the numerical assessments corresponding to them are given
in Table 2.3.

Table 2.3 — Base estimations of the desirability scale

Quantitative assessment on a Desirability of response
desirability scale values
0,80+ 1,00 very good
0,63 + 0,80 good
0,37 + 0,63 satisfactorily
0,20 + 0,37 bad
0,00 = 0,20 very bad

This choice of numerical estimates is explained by the
convenience of calculations, since d = 0.63 ~ 1 — 1/e and
d = 0.37 = 1/e. The d scale constructed in accordance with
Table 2.3 is a dimensionless scale, with the help of which any
response can be transformed in such a way that it is interpreted
in terms of usefulness or desirability for any specific
application.

The simplest type of transformation is one in which
there is an upper and/or lower specification limit, and these
limits are unique and do not allow changes in the quality
criterion. Outside these limits, the value d = 0.0, and between
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them d = 1. The partial desirability function under a one-sided
constraint has the following form:

d _ 01 y < ym’n

L vy,

Similarly, a partial desirability function is obtained if the

specification imposes a constraint from above, and under a
two-sided constraint, the desirability function takes the form:

d:{O, Y < Yiin MY > Yy
L Yoin SY S Yo

It is always desirable that the response value is not only
between the specification limits, but also at a certain distance
from them in order to prevent possible random fluctuations. In
addition, it is sometimes difficult to determine the exact
limiting line between acceptable and unacceptable product
quality indicators. In the general case, the conversion of
y to d is carried out according to a more complex law. For a
two-sided restriction of the form  ymin < Yy < Yma, the
conversion of the measured response y to the scale d is
performed using the expression:

d =exp (— (]y’)”) (2.36)
where: n — positive number (0 < n < o), not necessarily an
integer;

(2.34)

(2.35)

2V = (Yoo + Yiin)
Yiex ~ Yrin

In this case, the exponent of the power n can be calculated by

assigning a value of d to some value of vy (preferably in the

interval 0,6 <d < 0,9) using the formula:

y (2.37)
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H_ In(ln(2/d))

In(y’

For one-sided constraints of the form y < ymax oOF

Y > Ymin, Mmore convenient form of converting y to d is
another exponential dependence:

d =exp[—exp(—y’)] (2.39)
where: Yy’ — dimensionless value of the output variable, which

(2.38)

is determined from the expression
y' =bo + b1y (2.40)

The coefficients bo and bi can be calculated by specifying
the corresponding desirability values d for two values of the
property y, preferably in the interval 0,2 < d < 0,8. In
practice, one-sided specification is most common.

Having several responses converted into a scale d, it is
possible to combine from these different d some generalized
desirability index D by means of arithmetic operations. In this
case, if one of the responses is absolutely unsatisfactory, the
generalized desirability function D should be equal to zero
regardless of the levels of the different responses. A
mathematical expression that meets these requirements is the
geometric mean of the partial desirability functions, i.e.:

D=/d,d,...d, (2.41)

where: k — number of optimization criteria
Provided that some one di = 0, then the corresponding D is
also zero. Moreover, the generalized desirability function is
most strongly influenced by the smallest values of di. At the
same time, D = 1 only when all partial desirabilities di = 1
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(1=1, 2, ... k). Itisalso important that expression (2.41) allows
us to apply to partial desirabilities and the generalized indicator
a single method of specifying the basic desirability scale
estimates given in Table 2.3, if di=d1 =d>=... dv= 0,37, then
D = 0.37, etc. With the generalized desirability function, all
computational operations can be performed, as with any system
response, and D can be used as an optimization criterion in
the study and optimization of the process. It should be borne in
mind that the set of possible values of D is limited to D < 1.
The most effective application of the generalized desirability
function turned out to be in the development of recipes in the
technology of obtaining new polymer materials.

2.5. Software for planning experiments, developing
mathematical models, and optimizing the composition of
multicomponent systems

2.5.1. Software for constructing an experimental design
for ternary mixture systems. To build a work plan for
conducting research on various three-component mixture
systems of all possible ratios of components, we have
developed software (software) [102,103]. The program allows
you to solve one of the important problems that may arise
during planning, namely, the uneven content of the mixture
components (the concentration of one or two of them is less
than the content of the others by an order of magnitude or
more). The software was created in the Builder environment in
the C++ language [104-106].

In order to optimize the composition of compositions
that are mixtures of q different components, the simplex-grid
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method is used, since it is the most suitable for studying
mixtures. The variables X; (i =1,2,...,Qq) of such systems

are the proportions (relative to the content) of the i-th
components of the mixture and satisfy the condition (2.25).
When developing an experimental design, the factor
space is operated in the form of simplexes, therefore, the
created software provides for a transition from ordinary
Cartesian coordinates to a special simplex system. The points
that determine the relative content of each component are laid
out along the corresponding faces of the simplex. At the

vertices of the simplex, each X;= 1, and then they are
determined by the lines (or surfaces) of the level parallel to the

opposite side (or face) of the simplex. For a three-component
mixture on the plane, the simplex has the form of a triangle

with vertices xixo>x3 (Fig. 2.9).
IHTEpPAKTMEHE NAAHYBaHHA EKCNEPMMEHTY ANA cymiluei E@@

Tparica | Miagnaers | Feaynsrar |

3

Fig. 2.9 — Simplex area for experiment planning
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Each vertex of the simplex is an independent component of the

mixture; the points forming the edges of the triangle
correspond to binary systems of pairs of ingredients, the points
in the middle of the simplex are a mixture of a mixture of all
three components. The value of the content of the first
component (x1) at the vertex x1iS equal to one, and on the
opposite side X2x3 IS zero.

In g-component mixtures, the content of ingredients can vary
from 0 to 1 or within this interval, which is determined by the
requirements for the properties of the created compositions. In
this case, it is necessary to investigate only the (g-1)-
dimensional simplex subdomain of the full (9-1)-
dimensional area. The subdomain is given by restrictions on
the content of all components. The developed program allows
you to automatically obtain a factor space for conducting an
experiment for all possible combinations of the composition of
the compositions, including those with uneven content of
components. A limited area of irregular shape, which is a factor
space for conducting an experiment, is obtained by introducing
restrictions on the concentration of ingredients. For this
purpose, the program provides an option to enter restrictions on
the content of the components of the mixture (Fig. 2.10). The
limited region of irregular shape, i.e. the factor space of the
experiment for compositions with comparable ingredient
contents, is shown in Fig. 2.11.
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Fig. 2.10 — Section of the program working form with restrictions on
the content of mixture components
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Fig. 2.11 — Factor space for conducting an experiment
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Planning experiments using the simplex-lattice method
is carried out in a subregion “similar” to the original simplex,
i.e. in the polygon it is necessary to select a triangular
subregion. This triangle, firstly, must lie completely inside the
“cut out” area and, secondly, most fully cover it. The program
allows you to construct a region in the form of a triangle inside
the found subregion. The user can interactively select a
triangular region inside the found polygon, for which he must
first click the “Subregion” button, and an enlarged subregion
for conducting the experiment appears on the monitor screen
(Fig. 2.12).

Tparka Miaotaacre | Pesyorar |

< >

Fig. 2.12 — The enlarged subregion obtained under the given
constraints

The triangular subregion can be selected in various
ways (Fig. 2.13 a, b).
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Fig. 2.13 — Different options for choosing a triangular subregion

The determination of the vertex points of the triangle can be
carried out in two modes: by selecting the option “subregion
vertex point selection mode”, or by canceling it. Fig. 2.14 (a, b)
shows the subregions with the option canceled.

a) b)
Fig. 2.14 — Different options for selecting a triangular
subregion with the "Subregion vertex selection mode" option
unchecked

The researcher selects the most appropriate area of the
triangular shape based on his empirical experience. The next
option is to select a subarea that most fully covers the possible
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combinations of the ratios of the components in the
composition. Then, by clicking the “Get values” button, the
user sees on the screen that the selected triangle is inside the
complete simplex, and in the window on the right - the
coordinates of its vertices in the simplex system (Fig. 2.15).

IHTEPEKTHHH! N/IaHYBaHHA EKCNepuMeHTY AR cw"ulE;l E‘Elz
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3 |
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Fig. 2.15 — Constructed subdomain inside the full simplex

The properties of the system can be described by
different models taking into account specific requirements for
them - first of all, this is adequacy and simplicity. The created
software provides the possibility of using three types of
models: quadratic, incomplete cubic and cubic. The calculation
of the coefficients of the equations is carried out according to
the matrix relation X = AZ, where the matrix elements: A -
coordinates of the vertices of the simplex, X and Z - matrices of
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plans: for the desired working and for the complete simplex,
respectively.

By default, the program calculates the dependence of
the output variables on the content of the mixture components
according to the incomplete cubic model. By clicking the
"Calculation™ button, the user receives an experiment plan on
the screen (Fig. 2.16, table "Result").

IHTEPaKTMBHE NNaHYEAHHA EKEMEPUMEHTY A/1A Cymill el E@g

Tparka | Miaonacro | Peaynerar |

Bua mogeni
‘HEI'IDEIHa kyGiuHa Mofe b j
MaTprLa BepLIMH PeaynbTaT
TpaHcgopmoBaHol NinosnacTi
[ %1 %2 ‘><3 ‘ I %1 %2 ‘><3 ‘cwa ‘
e o 2 [a ‘ 1 0 0 1 0,4499168£0,447187 1
7 ARG ATy L 0 1 0 2 0.3493388:0.2502496.0.4004115 1
2 03433368, 0.2502436 04004115 3 0 0 1 =[5 01731380+ 0.2292862+0. 5965757 1
3 179130010 2202362 e eEETET] 4 08 05 0 4 0.2248516(0.3500832+0,4250651 1
5 08 0 05 5 0,1367612:0,3391015:0,6241472:1
& 0 05 05 3 0.2612384¢0.23926790, 499493671
7 0,3333333(0.333333310. 3333333 7 0.2076137(0.3094842+0,4829015 1
MoBepHYTUCA 40 FPaTEM 3anucari pesYNETAT B halin

Fig. 2.16 — Plan of experiment for the incomplete cubic model

For convenience, the experiment plan can be saved to a
file. The created file stores the experiment plan (Fig. 2.17).
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I plan. ixt - BnokHoT

®ain Mpaska @opmar Bug  Crpaska

0.100364 0449917 0449719
0349338 0.25025 0.400412

0173138 0228286 0583576
0224852 0.250083 0425065
0136751 0239102 0.524147
0261238 0239268 0499494
0207614 0.300484 0482902

Fig. 2.17 — The result of the program - a saved experiment plan

As already mentioned, the program allows you to build
experimental plans also using quadratic and cubic models. To
do this, you need to return to the form with calculations (Fig.
2.16) and select the appropriate options on the form (Fig. 2.18,
2.19).

IHTepaKTMBHE NNaHYERHHA eKCePMMEHTY 1A CyMillei K‘E‘R|
Tparta | Macénacrs Pesymerar |
Bua Moaeni
KeagpaTHdHa Mogdenb) -
Marprug BepLUvH PeaynbTar
TpaHCPOPMOBEHOT NiOOBNACTI
N <1 X2 |x3 | N X1 x2 ‘xa ‘CHME\ ‘
i o fa 1 [ [ 1 10,44991 68104487187 1
- T, i 1 i ? 13405388 0. 2B 02495, 1L.4004115 1
2 0.349330010,2502496: 04004175 |- ! ! ! =P 0.1731380¢0,2262662: 05385757 1
4 05 05 0 ]
3 017313801 0,2082862+0.5985757] : : i 0.2248516(0, 35008321 04250651 |1
5 05 0 0§ 5 0136751 2:0,338105: 10,5241 47201
b 0 05 05 6 0,26123840,2392679]0,49949367 1
[MoEEpHYTHCA A0 FPaTKM 3anucaTH PE3YAETAT B dalin

Fig. 2.18 — Plan of experiment for the quadratic model
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IHTEpaKTMBHE NAZHYBAHHA ERCNEPMMEHTY AR CyMiluen Q@g‘
Tpava | Miaoinacs Pesyasrar |
Bun Mopeni
‘Kyﬁqua mMofenb j
MaTpuLa BeplurH PezynbTar
TpaHeopMoBaHol NiooGnacti
e 1 %2 S N %1 ‘xz ‘xa ‘cwa ~
o 5 = ‘xa | 1 0 0 1 11100364430, 44991 66204437157 1
i SR ATE |, | [ 1 0 2 0,349336810.2502486: 0,4004115 1
Z 0.3493388 0 25024060 A00AT 15 3 0 0 1 =P 0,1731380-0,2262862: 0,598576771
] 0 BBEB66E0,3333333(0 0 :
5 1731390l 0 2282802, LEeRETE i . 4 0,1833550:0.383361110,4332629,1
5 0.33333330.6666666(0 5 0.2663473¢0.318805310,4168472: 1
6 0.6666666(0 0.33338 6 0,124622370,3760399( 0439337771
7 0333333300 1,5666E ¥ W
< > < >
[OBEpHYTMCA 40 MPETEK anKcaTi pesyieTar B daiin

Fig. 2.19 — Plan of experiment for the cubic model

Experiment plans for these models can also be written to a files
(Fig. 2.20).

dain Mpaska  dopmat Bug  Cripaska ®aiin Mpaeka  ®opmaT  Bug  Cripaska
[100364 0449917 0449710 p 100364 0449917 04489719
02349339 025025 0400412 0349339 025025 0400412
0173138  0.228286 0.598576 0773138 0.228285  0.598576
0224857 (0.850083 (0475065 0.183356 0383361 0433283
' ' 0266347 0316805 0416847
L v
0148858 0.302163 0548957
0290605 0242928 0466466

0231872 0235607 0.532521
0207614 0309484 04832002

Fig. 2.20 — The result of the program - saved experiment
plans

2.5.1.1. Experimental plan for ternary systems with
incommensurable component contents. The developed software
makes it possible to plan an experiment, in particular, for three-
component compositions, in which one of the components is
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added in a much smaller amount compared to the other two
ingredients (the difference can be 50+1000 times). Such a task
arises, in particular, when planning experimental studies on the
influence of substances in the nanoscale on the properties of
polymer compositions. When interactively planning an
experiment in systems of such a composition, the factor space
has a very small size (contracted into a strip or point), which
makes it necessary to make an uneven increase in the planning
area with the obligatory preservation of the correspondence of
mathematical coordinates. The created program allows you to
perform this operation [103].

The user begins work by entering restrictions on the
content of the mixture components and clicks the “apply level
lines” button (Fig. 2.21)

S

CE— |
|
Toii L
ps M
|

Fig. 2.21 — Section of the program working form with restrictions on
the content of mixture components

The factor space for conducting the experiment appears on the
monitor in the form of a strip (Fig. 2.22).
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IHTEPAKTMBHE NAAHYBAHHA EKCNEPMMEHTY ANA Cymilier
Tparx | Migoinecrs | Pesymsear |

Frrrrrrrr T

Fig. 2.22 — Factor space contracted into a strip

Further, when clicking the "subarea” button, in the
previous version of the program, which did not provide for
uneven enlargement of the subarea, the user would receive the
following result (Fig. 2.23).

AKTMEHE NASHYDEHHA EKCMEPVMEHTY Q8 Cymiliein
Fpama Muotnacrs | Pazymrar

¢ »

Fig. 2.23 — Increased factor space compared to the previous version
of the program
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In this case, interactive planning is impossible due to the small
size of the factor space.

The uneven increase in the planning area provided for
in the developed program is achieved automatically by the
algorithm built into it by introducing a coefficient that changes
the size of the subarea in a certain direction to the appropriate
size while maintaining the correspondence of mathematical
coordinates (Fig. 2.24).

Fig. 2.24 — Unevenly enlarged factor space

The user interactively selects three points within the
subdomain and the factor space of the experiment appears on
the monitor screen in the form of a triangle (Fig. 2.25).
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INTepaKTMBHE MnaHyBaHHA exCTEpHMENTY A7 CyMiue - OX|
Tparca Missacrs | Pesunerar |

Fig. 2.25 — Experiment planning area

By clicking the “Get values” button, the researcher
receives on the screen the area of the experiment, which is
located in the complete simplex, on which the triangle is not
visually visible (Fig. 2.26).

IHTEPaKTMBHE NAAHYBAHHA EKCMEPMMENTY AR Cymiliel

Tparka | Migognacre | Pesynsrar |

Fig. 2.26 — The experimental area is located in the full simplex
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The program by default outputs a plan matrix for an
incomplete cubic model (Fig. 2.27).

IHTEPAKTMEHE N/1aHYBaHHA EKCMEPMMEHTY AJIA CYMill el Q@gl

Tpamia| Miaognacrs Pesynerar |
Bug mogeni
‘HenoaHa KyGiyHa Monenb j
MaTpuLs BepLumH PesyneTaT
TPaHGPOpMOoBaHOI NinoGnacTi
Ne X1 <2 ‘><3 | [ 1 <2 ‘xa ‘cwa ‘
o @ ‘xa ‘ 1 0 0 1 0,3443360:0,001 0506¢1
1 00443360 0.0010508¢ |2 0 1 0 2 0,152146470.838111160.0097424; 1
- 0.152146410.638111160.0097 424 3 0 0 1 =5 0.7930241¢0.2016360; 0.0053387¢ 1
3 0,7930241(0.201 6360 0,0053337¢ 4 0s 05 0 4 011533798¢ 0.8412235¢ 0.0053965¢ 1
5 05 0 05 5 0,4738187(0,5223860¢ 0,003135211
& 0 05 05 6 0,4725852¢0,5198736£0,0075410¢1
7 0.33333330,3333333(0.3333333 7 0,3665946¢0,628027750.0053776: 1
MoBEpHYTUCA A0 MPaTKK 3aNMCATM PESYAETAT B adii

Fig. 2.27 — Plan of experiment for an incomplete cubic model has
been constructed

The experiment plan can be saved in a file (Fig. 2.28).

E nkm. txt - BAoKHOT

dain  Mpaeka ®GopmaT Bug  Chpaeka

0.154613  0.844336 0.00105069
0152146 0.838111  0.00974242
0.793024 0.201636 0.00533877
0.15338  0.841224 0.00539656

0473819 0522086 0.00319523
0472585 0519874 0.00754109
0.366595 0.6280258 0.00537763

Fig. 2.28 — Saved experiment plan

Experiment plans for quadratic and cubic models are
constructed similarly (Fig. 2.29, 2.30) and saved in files (Fig.
2.31).
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IHTepaKTMEHE MNAHYBEHHA BKENEPMMEHTY A71A cymillel

Tpara | Miofinacre  Pesynerar

Buo mogeni

MaTprua BepLUmH Pezynbtat
TPAHCPOPMOBAHOT NidoBnacTi
1 %1 %2 ‘x3 | N %1 %2 %3 ‘CgMa |
e 0 2 |>(3 | 1 0 0 1 0,344336020,001 050641
1 05300000508 4 0 1 0 2 0,152145470,838111160,0097424:1
2 01521464 0,838111140,0087424; 3 0 0 1 = I3 0,793024140,201 8360 0,0053397¢ 1
3 0,7930241 0,201 5360 0,0051397% 4 05 05 0 4 0,153379840,8412235¢0,0053965¢ 1
5 05 0 05 5 0,473818740,522986050,003195201
b 0 05 05 6 0,472585240,5198736:0,0075410¢1
HDBEDHHTHCH 00 FPATEM ‘ JanMcartu PESYNETAT B akin ‘

Fig. 2.29 — Plan of experiment for a quadratic model

IHTEPaKTMBHE MAaHYBAHHA EKCTIEPUMEHTY AAA CYMillen

Mparka | Migotinacrs  Pesynsrar

Bwa mopeni
MaTpuua sepmH PesyncTar
TpaHcgpopMoBaHol nigoGnacTi
N 1 %2 ‘xa ~ Ne <1 %2 %3 |Cgma ~
e 1 2 |><3 ‘ 1 i [} E 1 034433604 0,001 0508 1 =
- 0 paaaTnomoEe: |2 [ 1 [ ? 0ABZT 44 0 838111160.003742411
E L15Z164 LB 1T 00097404 | o v ! =B 0.783024110.2016350,0.005338701
3 0,7030241€0.201636070, 00533976 4 056666661 0,3333333:0 4 0153791 |0,342261070,00334791
5 0.333333310,66B6EGBED 5 0,1529687 0,840186170,0060451; 1
B DBEBBEEED 033332 [ 0,36741697 0,6301027 0,0024803(1
7 0,333333300 0.6BRRE v Kl A EARAANT A A4 EArRAC A Anane anT 4 v
am > Sl £
[MoBEpHYTMCA A0 FPATEM 3aMNUCATH PESYNETAT B Balin

Fig. 2.30 — Plan of experiment for a cubic model
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P! kvm.txt - Brouxor P kum. ixt - BaokHoT

dain TMpaeka dopmat Buag  Cripaeka Daiin  Mpaeka @opMaT Bua  Cripaeka
0154613 0544336 0.00105069 0154613 0844336 0.00105069
0152146 0838111  0.00974242 0152146 0838111 0.00874242
0.793024 0201636 0.00533977 0793024 0201636 000533977
015338 0841224 000539656 0153791 0842261 0.00394794
0473819 0522986 0.00319523 0152969 0840186  0.00684518
0472585 0519374 0.00754100 0367417 0630103 0.00248039

0580221 0415869 0.00391008
0365772 0625953 0.00827487
0579398 0413794 0.00880732
0366595 0628028 0.00537763

a) b)

Fig. 2.31 — Saved plans of experiments for quadratic (a)
and cubic (b) models

Thus, the developed software has a user-friendly
interface and does not require additional knowledge of
computer technology. The software can be used for automated
interactive planning of an experiment in the process of
conducting scientific research on mixture systems (polymers
modified with inorganic and organic additives, nanofilled
polymer dispersions, fiberglass, polymer concretes, etc.) in
research laboratories and at enterprises of various industries.
The program allows you to plan an experiment for all possible
ratios of ingredients in three-component compositions,
including solving one of the important problems that may arise
during planning, namely: the uneven content of mixture
components, in which the concentration of one or two of them
is less than the number of others by at least an order of
magnitude.

Thus, in C++ software has been developed that allows
interactively building an experiment plan for various ternary
mixtures using three types of models of dependence of the
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output parameters on the content of the components -
incomplete cubic, cubic and quadratic. The program allows
solving the problem of experiment planning for compositions
in which the content of one or two components differs from the
others by hundreds and thousands of times. This is achieved
thanks to the algorithm built into the software, which ensures
an uneven increase in the area of the factor space with the
obligatory preservation of the correspondence of mathematical
coordinates.

2.5.2. Software for constructing an experimental design
for four-component mixture systems. In order to automate the
process of experimental research on optimizing the
composition of multicomponent mixtures, we developed
software for building a work plan of experiments for all
combinations of ingredient ratios in four-component systems
[31]. The program was created in the Delphi environment [107-
109]. The software was developed on the basis of the simplex-
lattice method, while the ratio of ingredients in the
compositions satisfies condition (2.25), which determines the
region of admissible variables, the so-called simplexes [96]. As
already noted, for a four-component system it has the form of a
tetrahedron, the faces of which correspond to the simplexes of
three-component mixtures, and the points inside are four-
component ones. To build models in simplex-lattice plans,
experimental points are symmetrically located mainly on the
periphery of the simplex. To take into account the results of
experiments inside the simplex when developing the software,
we used simplex-centroid plans, which contain points with
coordinates: (1,0;...;0); (1/2;1/2,0;...;0); ...; 1/q1/q;..../q),
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as well as all points that can be obtained by permuting these
coordinates [150]. In this case, the experimental points are
located at the vertices of the simplex, the midpoints of the
sides, the centers of the faces of different dimensions, one point
is in the center of the simplex. In this case, from the 2°*

experimental data, q points have one non-zero component; CZ;

Cj; Cj (1 - two, three and four non-zero ones, respectively,

and one point contains all the components.

To construct the experimental plan, we took a
conditional mixture of two polymers (A, B) and two modifying
additives (c, d), the relative concentrations of which were xi,
X2, X3, X4, respectively. Two-sided restrictions were imposed on
the content of individual ingredients of the system:

0<a <x <h <1 i=1q (2.45)

where: &, b — upper and lower limits of each

component, which must not be equal to each other.

The development of plan of experiment that meets some
optimality criterion begins with determining the coordinates of
candidate points, namely: polygon vertices, edge midpoints,
face centers, and the common centroid. For this purpose, the
software uses the McLean—Anderson method [99], according to
which all possible combinations of the lower and upper levels
a, and b, are selected and for each component, skipping the

content of one of them. For the four-component mixture under
study, one of the options may be a,;b,;—b,, while the total

number of combinations (at g=4) is 32. In the created software,
to select all possible combinations of ingredients in the
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mixture, the researcher performs the corresponding procedure:
procedure convert (a, b: vectorl; var x1, x2, x3, x4: vector).
The input of this procedure is given by restrictions on the
content of each of the components of the mixture. They are
specified on the form, and the program reads the data recorded
in the Edit component. The variable a takes the values of the
lower levels, and the variable b takes the values of the upper
levels of the content for each ingredient of the mixture. The
output of the procedure is four one-dimensional arrays x1, x2,
x3, x4, the elements of which are the values of the coordinates
of the vertices of the polyhedron corresponding to the content
of the components of the mixture.

The resulting polyhedron has faces of the first and
second orders. Faces of the first order are edges that have two
identical coordinates, and faces of the second order are edges
that have one identical coordinate. The program performs the
procedure: procedure grani (x1, x2, x3, x4: vector; var oxl1,
0x2, 0x3, ox4: vector), during which the points are compared,
and those of them that have one identical coordinate form a
face. In this case, the vertices that are repeated are excluded. At
the output, we have four one-dimensional arrays ox1, ox2, 0x3,
ox4, which are the coordinates of the centers of the selected
faces. The dimension of the resulting polyhedron is always g-1.

Further, among the obtained combinations, it is
necessary to select those for which the sum of the
concentrations is less than one, and add the content of the
component that was omitted. To do this, the procedure is
performed: procedure rebra (x1, x2, x3, x4: vector; var dx1,
dx2, dx3, dx4: vector), at the input of which the coordinates of
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the vertices of the polyhedron x1, x2, x3, x4 are given. During
the procedure, all points are compared with each other. Points
with two identical coordinates are searched for. These points
form the edges of the polyhedron. At the output of the
procedure, we have one-dimensional arrays dx1, dx2, dx3, dx4,
the elements of which correspond to the coordinates of the
centers of the edges.

Variants with added components that satisfy conditions
(2.25) and (2.45) represent the vertices of the desired
polyhedron, which in the studied simplex forms an octagon.
The resulting polyhedron has faces of the first and second
orders: the first order is edges that have two identical
coordinates, and the second is one coinciding coordinate. In
this case, the vertices that are repeated are automatically
excluded. The dimension of the resulting polyhedron is g-1.

The next step is to select the r-dimensional faces, or
hyperfaces of the polyhedron, which are within 1<r<q-2.

At r=1 it be an edge, at r=2 is a face, at r=3 is a
hyperface. A face with dimension r is formed by a group of
vertices that have the same coordinates in the number q—r -1.

In the four-component system, a three-dimensional polyhedron
is formed. Its edges have vertices with two identical
coordinates (4—-1—-1=2), and the faces have vertices with one
identical coordinate (4—2—-1=1). In this case, the maximum
number of vertices with the same coordinates gq—r -1 is

selected, because they form the r-dimensional face. The upper
limit of the total number of r-dimensional faces is calculated
by the formula:
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q-2
D cart2er (2.46)

q-r-1=1
In each of the selected faces, the coordinates of the centers
(centroids) are determined as the average value of the
coordinates of the vertices that form the corresponding face.
When executing the procedure: procedure centr(x1, x2, X3, x4:
vector; var cx1, cx2, cx3, cx4: real) the values of the
coordinates of the candidate points for the plan are input to it.
Next, the coordinates of the common center (centroid) of the
polyhedron are calculated as the average value of the
coordinates of all vertices. The output is the coordinates of the
common center of the polyhedron cx1, cx2, cx3, cx4 (Fig.2.32).

KoopguHary 3arassHoro
LEHTPY 6aratoKyTHVKa
X1 0,311

Xz ossr

X5  |oozzs

X4  |oooss

Fig. 2.32 — Programmatic determination of the common center of a
polyhedron (centroid)

As a result, 27 candidate points for the experimental
design are obtained.
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As a response function that connects the initial
parameters with the factors that change during the experiments,
y = ¢ (X1, X2, X3, x4) we chose an incomplete cubic model,
which has the following form:

9= Bx + D BixX;+ O BuXx %, (247

1<i<q 1<i<j<q 1<i< j<k<q
To determine the numerical values of the coefficients of the
polynomial (2.47), it is sufficient to have 14 points of the plan
[96]. In order to select specific points for conducting
experiments, the developed software uses a method of drawing
up a plan containing a given number of experiments. It consists
in the fact that the specified points must be maximally distant
from each other in the factor space allocated on the simplex by
restrictions. For this, the distance between all candidate points
and the center of the octahedron (dmn) is calculated by the
formula:

] e

where: m and n — furst and second points, i —
component number

When executing the procedure: procedure vids_centr
(x1,x2,x3,x4:vector; cx1,cx2,cx3,cx4: Real; a,b:vectorl; var
dc:vector) the distance from the candidate points in the plan
X1, X2, X3, X4 to other points cxi, Cx2, Cx3, CX4 IS determined by
the formula (2.48). The input parameters for it are the
coordinates of the candidate points in the plan x1, x2, x3, x4
and the coordinates of another point cx1, cx2, cx3, cx4 to
which the distance needs to be found (in particular, this may be
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a point — the common center of the figure). In addition, the
values of the restrictions on the content of the mixture
components (arrays a, b) are passed to the procedure. The
result of the procedure is a one-dimensional array dc
containing the distances from each point to the center (or
another point).

Procedure execution: procedure max_d
(x1,x2,x3,x4,dc:vector; var max:integer) determines the
number of the array element that has the maximum value of
this distance. The input parameters of the procedure are one-
dimensional arrays x1, x2, x3, x4, corresponding to the
coordinates of the polyhedron, and a one-dimensional array dc,
the elements of which are the distances from the points of the
polyhedron to its center.

To select the points for conducting experiments, the
procedure is performed: procedure vibir_tochok (tx1, tx2, tx3,
tx4, dc: vector; dn: Real; var px1,px2,px3,px4: vector). In the
software, the distances (d, ,;d; ;) are calculated between each

of the obtained points and the remaining points according to
the formula (2.48). Then the researcher selects the normalized

distance (d, ), the value of which affects the number of points

in the plan. It should be selected smaller when a larger number
of points is required, and larger if their number is small
enough. The normalized distance was selected, guided by the

condition:
1

d7 <d; <(2d)?, (2.49)
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where: d;” — average distance of a point from the

center
The software assumes: d;‘” =0.7424, and the normalized

distance d.__=1.0019. The coordinates of the points of the

polyhedron tx1, tx2, tx3, tx4 are given as parameters to the
procedure input, the vector of distances from which to the
center dc and the normalized distance dn are selected from
condition (2.49). The procedure determines two points that are
at the greatest distance from the center and from these points to
the remaining candidate points. Points for which the distances
to the two already selected points of the plan are less than the
normalized one are included in the plan, and the rest are
filtered out. Candidate points are arranged in order of
decreasing distance from them to the center of the polyhedron.
The first points in the arrays are those that are located at the
maximum distance from the center of the figure. Then points
that have a distance to the two selected points less than the
normalized one are discarded. The procedure outputs four one-
dimensional arrays px, px2, px3, px4  containing the
coordinates of the points included in the plan. If there are not
enough points in the plan to build the model, it is necessary to
reduce the selected norm, and if there are too many points, then
you can either increase the normalized distance, or repeat all
the above actions for the candidate points, not taking into
account those that are already included in the plan. For the
selected example, together with the two points that have
already been selected for the experimental plan, we obtained 15
points, but only 14 are needed, so from these points we
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discarded the one that has the smallest distance to the common
center of the polyhedron.

Thus, software has been developed using the simplex-
centroid method according to the McLean—Anderson
algorithm, which allows obtaining an experimental plan for
studying a four-component system, which contains 14
necessary and sufficient points.

2.5.2.1. Computer-aided planning of experiments and
optimization of composition composition to obtain
microfibrillar filaments with improved properties. As shown in
section 1.2, reducing the diameters of individual filaments to
micro- and nano-sizes and introducing substances in their
structure in the nanoscale is an effective method of modifying
synthetic fibers and threads. Adding special substances to the
mixture of incompatible polymers - compatibilizers [66],
nanoadditives [47,59,60,69] or their compositions [67,68]
allows you to control the process of in situ formation of fibrils
of one component in the matrix of the other. Thus, introducing
nanoparticles of the original [59,60] and modified silica [47]
into the melt of a PP/CPA mixture allows you to obtain
complex threads from nanofilled PP microfibrils with a high
specific surface area and improved mechanical properties.
Simultaneous addition of carbon nanotubes and sodium oleate
(compatibilizer) to the PP/SPA mixture is more effective than
individual substances [68]. Polyethylene terephthalate (PET)
fibrils in a PP matrix with maximum length and minimum
diameter were obtained by modifying a PET/PP blend using
grafted maleic anhydride and TiO2 nanoparticles [28].
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When choosing the composition of the composition for
obtaining fine-fiber materials, it is important to combine their
desired indicators with the maximum content of the dispersed
phase component, since the technology for their production
from melts of polymer mixtures involves the extraction of the
matrix polymer from a composite monofilament or film [59].
This is due to the fact that increasing the concentration of the
dispersed phase polymer is a prerequisite for improving the
economic performance of production and reducing the
environmental load on the environment.

Based on this, we conducted research on optimizing the
composition of the nanofilled compatibilized
polypropylene/copolyamide blend with the maximum possible
PP content to obtain complex microfibrillar yarns with
predetermined characteristics. To reduce the time spent on
studying  the  four-component  PP/CPAJsilica/siloxane
composition, the experimental plan and the creation of a
mathematical model were carried out using the developed
software [31]. As an equation that establishes the relationship
between the content of the components of the studied system
and the properties of microfibrillar yarns, the program provides
an incomplete third-order polynomial. To estimate the
numerical values of its coefficients, an experimental plan was
drawn up in the studied region of the factor space. The input
variables were: x1, x2, x3, x4 - relative concentrations of PP,
SPA, nanoadditive and compatibilizer, respectively. The
following restrictions were imposed on the concentrations of
the ingredients of the mixed composition:

0,2< x1<0,45; 0,55< x 2<0,80;
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0,005< x3<0,040; 0,001< x4<0,010 (2.50)
In this case, the condition (2.25) must be met. The following
initial parameters were selected: y1 — average diameter of PP
microfibrils; y» — strength of complex microfibrillar threads at
break; ys3 — hygroscopicity of threads.
In the created program, restrictions are
introduced on the content of each of the components of the
mixture —arrays a and b (Fig. 2.33).

BBegitb obMerxeHHs
02  <=BonokHoyTeoptotoumii noniMep (x1)<Z04s5
055  <=MaTpuyHuii nonimep (x2)<= 08
0005 <=[lobaeka (x3)<= 004
0001 <=KomnaTubinisatop (x4)<= 001

BeecTH paHi

| n0I&aﬁ.a].'.l!'l...ﬂIDMI’.‘!‘I.&HI..I.QHKI!‘I...I].!lﬁl!ll!.’..........................................................E|

BBeqeHHA 3HaYeHb Y i no6ynosa mopeni |

Fig. 2.33 — Introduction of restrictions on the content of mixture
components

Next, the program performs the following actions step by step,
according to the described algorithm:

- determines the coordinates of the vertices of the
polyhedron;

- selects the r-dimensional faces of the polyhedron
(1<r<qg-2) and determines the coordinates of their

centroids;
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- calculates the coordinates of the common center of the
polyhedron;

- finds the distance from the candidate points in the plan
to the common center and determines the two points that lie at
the greatest distance from the center;

- eliminates points for which the distance to the two
selected ones is less than the normalized one (for the system
under study, the following normalized distance was chosen:
d_ =1.0019);

- determines the coordinates of the points that
entered the plan.

Thus, in a few fractions of a second, the program
creates an experimental plan for studying the composition of
PP/CPAV/silica/siloxane according to the McLean—Anderson
algorithm, which contains 14 required points (Fig. 2.34).

Experimental studies were conducted using a
thermodynamically incompatible PP/SPA mixture, in which
the dispersed phase was isotactic polypropylene, and the
dispersion medium was alcohol-soluble  copolyamide.
Pyrogenic silica (SiO,) with a specific surface area of 324 m?/g
was chosen as the nanofiller, and an organosilicon substance
(polyethylsiloxane) was chosen as the compatibilizer. The
components were mixed in a worm-disc extruder.
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ToukH n1aHy eKcriepuMeHTy
X1 X2 X3 X4

02 0,794 0005 0,001

Homepu
TOHOK MNaHy

0444 055 0,005 0001
02 075 004 0000
0400 055 004 0,001

n o= W N

02 075 004 001
04 055 004 001
0,2 |0,7675 0,0225 0,01
04175 0,55  0,0225 0,01
0,2 (07545 0,04 00055
04045 0,55 0,04 00055
11 /03 085 004 001
17 0,3045 06545 0,04 0,001
13 [0,3175 [0,6675 0,005 0,01
14 |0,30225/0,65225 0,04  0,0055

v 0N G

Fig. 2.34 — Plan of experiment for studying the composition of
PP/CPAV/silica/siloxane

The modifying additives were previously introduced into the
PP melt, and the resulting granules were mixed with the matrix
polymer (CPA). Composite monofilaments were formed on a
laboratory stand at a temperature of 190 °C, with a draw ratio
of 1000 %, and their thermoorientation drawing was carried out
at a temperature of 150 °C with a multiplicity of 5. Complex
threads from nanofilled PP microfibrils were obtained by
extracting the matrix polymer from composite threads with an
aqueous solution of ethyl alcohol. The strength of complex
threads at break was determined using a KT 7010 AZ brand
tearing machine. The hygroscopicity of the threads was
estimated by the weight method at an air humidity of 98 %.
The processes of PP structure formation in the matrix were
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studied using an MBD-15 optical microscope, determining the
average diameter of microfibrils in the bundle after extraction
of CPA from the composite extrudate.

Experimental studies carried out in accordance with the
developed plan showed that for all compositions a
microfibrillar structure is realized. The ratio of siloxane and
silica significantly affects the formation of the morphology of
the PP/SPA mixture (the average diameter of microfibrils
varies from 1.6 to 7.1 um). All modified systems are stably
processed into composite monofilaments. After extraction of
the matrix polymer from them, complex polypropylene
microfibrillar filaments were obtained, the properties of which
are given in Table. 2.5.

Table 2.5 — Effect of mixture composition on the average diameter
of PP microfibrils and on threads properties

N of | Average diameter Threads Hygroscopicity
point | of microfibrils, um | strength, MPa of threads, %
of plan

1 1,6 250 0,51

2 44 280 0,43

3 3,3 345 0,69

4 7,1 410 0,63

5 3,4 365 0,37

6 6,2 325 0,31

7 3,5 380 0,40

8 54 355 0,29

9 2,7 420 0,53

10 6,5 400 0,48

11 4,2 410 0,34

12 3,7 445 0,68

13 4,4 390 0,59

14 3,2 470 0,73

120



Based on the data in Table 2.5, the coefficients of the
polynomial (2.47) were calculated by the least squares method
in matrix form. The calculations were performed using a
previously created program in the Object Pascal language [33].
As a result, a system of equations (2.51) was obtained, which is
a mathematical model describing the process under study:
¥ =3.46x, +5.24x, +4.17x, —5.33x, + 2.78x,X, + 6.37X,X, —46.83X,X, + 7.89X,X, —
—24.61x,X, —49.05X,X, —161.35X, X, X, —0.97X,X,X, +4.94X,X,X, +3995X,X;X,
§ = 359.9x, +340.4x, +408.8x, —263.9,X, +457.7x,X,548.6x,X, — 2878X,X, —~11283,.X,X, -
-1034,,%,X, —2311X;X, —5155X, X, X; — 446.1X,X, X, + 248.4X,X,X, — 71890X,X,X,
¥ =0.85x, +0.79x, +1.01x, —3.69x, +0.86x, X, +1.58x,X; —19.72x,X, —8.00x,X, —
—9.78X,%; —16.87x,X; —40.47X, X, X3 —9.79X, X, X, +1.34X,X;X, —116.3X,X,X,
(2.51)
After determining the coefficients of the regression
equation, a statistical analysis of the results was performed -
the equations were checked for adequacy, i.e. the ability of the
model to predict the results of research in a certain area with
the required accuracy [97]. The adequacy of the model was
checked using software developed by us earlier, which uses a
fairly common method, which consists in comparing the
estimates of the error variances between the response values
calculated by the regression equation at some points of the
factor space, on the one hand, and on the other hand, obtained
independently [33]. This is equivalent to testing some linear
hypothesis by calculating and analyzing the corresponding
Fisher F-ratio. This method requires the presence of several
observations for y at least at one of the points x;. For the
created model, 15 different points were determined, each of
which is repeated three times (i.e., a total of 45 observations).
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The input file of the observation points, which contains the
values of x;, is shown in Fig. 2.35.

B vvod_file_o_x.ixt - BaokHOT

QAN Mpaska ©opMatT  Bua  Crpaska

[1s

45

14
333333333333333333333333333333333333333333333
02 0794 0005 0.001

02 0794 0005  0.001

02 0794 0005 0.001

0444 055 0005  0.001

0444 055 0.005  0.001

0444 055 0.005  0.001

0.35 0.615 0.03 0.005

0.35 0615 003 0.005
0.35 0615 003 0.005

Fig. 2.35 — File x.txt — input data of observation points

(In this case, Figure 2.35, as well as the following Figures 2.36,
2.37 and 2.38, for better understanding, data for the first,
second and last points are presented.)

After entering the data x; the plan matrix for the
developed model is programmatically generated (Fig. 2.36).
For the convenience of the user, it is displayed in the form
window using software created in the C++ language using
modern programming methods [104,110].

0,00079 000016 000000 000000
0,00079 000016 000000 000000
0,00079 000016 000000 000000
000122 000024 000000 000000
000122 10,00024 000000 000000
000122 000024 D.00000 000000

020000 073400 000500 000100 015880 000100 000020 000387 000079 0,0000
020000 079400 000500 000100 015880 000100 000020 000397 000079 00000
020000 073400 000500 000100 015880 000100 000020 000387 000079 0,0000
0,44400 055000 000500 000100 024420 000222 000044 000275 000055 00000
0,44400 055000 000500 000100 024420 000222 000044 000275 0,00055 0,0000
044400 055000 000500 000100 024420 000222 000044 000275 000055 00000

0,35000 061500 003000 000500 021585 001060 000176 0.01845 0.00307 000015 000846 000108 000005 000009
0.35000 061500 003000 000500 02155 0.01060 000175 0.01845 0.00307 000015 000846 000108 000005 000009
035000 061500 003000 0.00500 021525 001050 000175 Q01845 000307 000005 000646 000108 000005 000009

Fig.2.36 — Programmatically generated plan matrix
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Thus, for the variable yi, the experimental observation data are
shown in Fig. 2.37.

[} vvod_file_y.txt - BAokHOT

Gaifin  Mpaeka ©opmaT  Bra  CNpaeka

Fig. 2.37 — File y.txt — experimental observation data y1

The average values calculated by the software for each
observation point and the corresponding estimates of the
regression function for the variable y;of the model (2.51) are
presented in Fig. 2.38.

cepeaHi OLiHES
FHAUEHHA chyHELT
e perpecii
1.63333 1.64987
1.63333 1.64987
1.63333 1.64987
4.31000 4.40023
4.31000 4.40023
4.31000 4.40023
463333 4654549
463333 4654549
463333 4.654549

Fig. 2.38 — The values of the regression function estimates and the
average values obtained in the created software

The next step of the software is to determine Fisher's
F-ratio using formula (2.16) for all output variables of the
model (2.51). The obtained values are shown in Fig. 2.39.
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S1/52=3.07372 S1/52=3,45120 S1/52 = 2.05491

a) b) C)

Fig. 2.39 — FF-ratio obtained in the software application
for y1 (a), y2 (D) Ta y3 (C)

According to the general provisions, the hypothesis of
the adequacy of the model ¥ is not accepted at the significance

level « if the ratio (2.16) exceeds the level quantile (1 — «) of
the Fisher distribution, and in other cases it is accepted.

Provided that m > p, the ratio :_12 has the form of the Fisher

2
distribution [97]. The specified check is implemented by the
software.

The results obtained indicate that the developed
mathematical model is adequate: for the significance level «
= 005 = F(m—-p, n-m) = F(@15-14, 45-15) =
F(1, 16)=4.17, i.e. for all y from model (2.51) the calculated

2
dispersion ratio % is less than the value F(m—p, n-m).

2

The optimal content of ingredients in the studied four-
component mixture was determined by the multi-criteria
optimization method using software developed by us
[111,112]. Multi-criteria optimization is the process of
simultaneous optimization of several conflicting objective
functions in a certain domain of definition. In the general case,
the multi-criteria optimization problem is described by
expression (2.30), while the objective functions that are
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investigated at the maximum are transformed into functions
that are investigated at the minimum by formula (2.31) [100].
For a nano-filled compatibilized polypropylene/copolyamide
mixture, the multi-criteria optimization problem has the
following form:
Yy, = 3.46X, +5.24X, +4.17X, —5.33X, + 2.78X,X, + 6.37X,X; —46.83X X, + 7.89X,X; —
— 24.61X,X, —49.05x,X, —161.35X,X, X, — 0.97%,X,X, +4.94%,X,X, +3995X,X,X, — min
Y, = 359.9X, +340.4X, +408.8X, — 263.9,X, + 457.7%,X,548.6%,X, — 2878X,X, —1128/3,,X,X, —
—10348,,X,X, — 2311X,X, —S155X, X, X, — 446.1X, X, X, + 248.4X,X,X, — 71890x,X,X, — max
y, = 0.85x, +0.79x, +1.01x, — 3.69x, + 0.86X,X, +1.58X,X, —19.72x X, —8.00X,X, —
—9.78X,X; —16.87X,X; —40.47%, X, X5 —9.79% X, X, +1.34X%,X;X, —116.3X,X,X, — max
0.2<x, <045 (2.52)
0.55<x,<0.8
0.005< x, < 0.04
0.001< x, <0.01
X + X, + X+ X, =1
To solve this problem, we used the scalarization
method, that is, we converted it to the solution of some scalar
(single-criteria) problem. Scalarization was performed by the
linear convolution method, using software [111]. The
coefficients of the problem variables (y1, y2, y3) are read from
the file y.txt (Fig. 2.40).

!'! y.txt - BAOKHOT

©an Mpaeka  DopMaT  Bug  ChpEexs

346524 417-5332786.37 -46.83 7.89 -24.61-48.05 -161.35 -0.97 4.94 3995
359.0 3404 408.6 -263.9 457.7 548.6 -2878 - 1128 -1034 -2311 -5155 -446.1 2484 -71800
0.850791.01-3.69086158-19.72-8-078-16.87 -4047-9.791.34 -116.3

Fig.2.40 — File y.txt — coefficients of the mathematical model
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Fig. 2.41 shows the initial data of the problem.

Mamemamuuna smooens 3adaui

3azansHuil 61eA0:
ye=k_I*xcI+k_2%2+k 3 *x3+k_4*cd+k_12*xcI *x2+k_13*c1 *x3+k_14*x] *vd+k 23 %2 %3+ k24 *x2 *vd+k_34*x3 *vd+
+h_123*x1*x2 *x3+k_124*xI*x2*cd+k 134 %1 *x3 *vd+k_234%x2*x3 *x4

3.46%% 1 +5. 2453 +4. 1 T¥x3+-5.33%x 442, 78 %5 [ #x D +0. 37 % [ #x3-46.83 %5 ] %5 4+7. 89452 %1 3-24.61 #5345 4-49.05 %23 ¥z 4~
~164.35%0 1 #5242 3-0. 07 % ] 5 20444, 94 %5 1 #1354 +3095 % 2% 3 d

y2= 359, 9%x 14340, 4 %3 2+408 8%x3-263. 954 +457.7 %5 1 %52+ 548,645 ] #x 3-2878%x 1 #x4- 1 1 28%x2¥x 3- 1034 #x 2¥xd-
-2311%53%54-5155%5 1 %5 2%53-4406, 1 ¥5 1 ¥ 2% 4 +248. 4% 1 23 ¥ 4-7 1 890%5 2 453 %5 4

0.85%5 1 +0.79%%2+1.01 %5 3-3. 6954 +0.86 %5 I %52+ L. 58%x [ ¥x3- 10, ¥7 2% ] %5 4-8%5 2 %5 3-
-9, 78%x2%xd-16.87 ¥x3%x4-40. 47 %x | ¥x2 ¥x3-0. 79%x [ ¥xD¥x 441 34 %x I ¥x3¥xd- ] 16.3¥xD¥x3%xd

51 [0.2,045]
%2 & [0.55:0.8]
£3 e [0.004;0.01]
54 & [0.005;0.04]
%1452 +x3+x4=1

OoMexcenna [ Hacmynuuii Kpox ]

Fig. 2.41 — Initial data of the multi-criteria problem

The convolution weights, which determine the degree
of importance of each criterion: ¢, =0.34; «,=0.33;
a, =0.33 - are specified on the software form.

In the software, the minimization of the objective
functions that are investigated to the maximum is carried out
according to the formula: min(y)=—max(y). Next, the linear

combination of the objective functions is minimized, that is,
the following problem is solved:

F=a,-y,+a, Y, +a; Yy, —>mn (2.53)

By clicking the “reduce problem” button, the form (Fig.
2.42) displays the single-criteria problem that was obtained as a
result of the calculations.
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Memoo niniinoi 3copmru
F=al*yI+a2*2+a3*3
al= 03¢

al= 0.3
a3=0.33

F=1178711 ®x1-110,811]1 =x2-133,8105 *x3 86,4025 *xd -130,3706 *x1%x2 -170,3036%1°x3 040,5254 SxAxd-
3775626 *x2*x3 336,08 *x2*x4 7515201 *x3*xd 10509.5407 *x1*x2*x3 50,1130 *xI*x2 x4-
-80,7346  *xI*x3*xd+25120,370 *x2%x3*xd

| 36ecinu 3a0asy J

[ Hacmynnusi kpox ]

Fig.2.42 — The optimization problem is transformed into a single-
criteria one

Thus, using software, a mathematical model was

created in the form of a single-criteria problem (2.54), which

determines the influence of the nanoadditive and

compatibilizer on the dimensional characteristics of

polypropylene microfibrils and the properties of complex
threads.

F =-117.87-x,-110.81-x, —133.82- x, +86.49 - x, —150.38- x, - X, —
—179.39- X, - X, +940.33- %, - X, —377.56- X, - X, +
+336.08-x, - X, +751.52 - X, - X, +1659.65- X, - X, - X; +150.11- X, - X, - X, —
—80.73- X, - X5 - X, +25120.38- X, - X, - X, — min

0.2<x,<0.45 (2.54)
0.55<x,<0.8
0.005 < x, < 0.04
0.001< x, <0.01
X+ X, + X+ X, =1

The developed model is much simpler than the multi-criteria

optimization problem and can be solved by one of the known
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methods and wused to optimize the four-component
composition.

In order to determine the optimal composition of the
studied mixture, the so-called conditional optimization problem
was solved, which is associated with optimization under
constraints on the variables. To move from the conditional
optimization problem of the studied four-component mixture
with constraints to the problem without constraints, the penalty
function method was used [100,101], in which by P(x) the
function Z will be “penalized” if the constraints are violated
(i.e., its value is increased), while the minimum of the function
Z will be located inside the constraint region. Under constraints
¢,(x)>0, j=12,..,m, function P(x) is written by equation
(2.33). The minimization problem for the
polypropylene/copolyamide/silica/siloxane  system is to
minimize function Z=f(x) under constraints c,(x)>0,

j=1,2,...,m, then function Z will have the following form:

&1

Z=p(x,r)=f(x)+r ;cj(x) (2.55)

Provided that x has admissible values, i.e. values for

which ¢, (x)> 0, the function Z will take values that are larger
than the corresponding ones, and the difference can be reduced
by r. In the case when x has admissible indices, at the same
time approaching the boundary of the constraint region, and at
least one of the functions c;(x) is close to zero, the values of

the functions P(x) and Z will be quite large, i.e. the influence
of P(x) function is manifested in the formation of a “crest
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with sharp edges” along the boundary of the constraint region.
Provided that the search starts from an admissible point and the
unconstrained function ¢ (x,r) is minimized, the minimum
will, of course, be reached inside the admissible region for
problems with constraints. Since r is a sufficiently small value,
to reduce the influence of P(x) at the minimum point, it is
necessary to make the minimum point of ¢(x,r) the
unconstrained function coincide with the minimum point of the
problems with constraints.

To solve problem (2.54), the software creates an
unconstrained function using a penalty:

F =-117.87-x,-110.81-x, -133.82- x, +86.49 - x, —150.38- x, - X, —

—179.39- X, - X, +940.33- X, - X, —377.56- X, - X3 +
+336.08- X, - X, +751.52 - X, - X, +1659.65- X, - X, - X; +150.11- X, - X, - X, —
—80.73- X, - X5 - X, +25120.38- X, - X, - X, +

1 1 1 1 1 1
+r- + + + + + +
X —-02 045-x, x,-055 0.8-x, x,—0.005 0.04-x,

1 1
+ +
X, —0.001  0.01—x,

+(L=x — X, — X, — x4)zj—> min

(2.56)
The closer to the minimum the penalty is under the condition
r — 0, the smaller the gradient of the function will be. The
search ends under the condition r, <& , where ¢ - is a given

sufficiently small number. As a result of applying the penalty
function method, we obtained an unconditional optimization
problem.

To solve the optimization problem of the four-
component composition (2.56), the gradient method with step
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splitting was used [101]. It is assumed that the functions f(x),
VI exist and are continuous. The method is based on an

iterative procedure, which is defined by the formula:
X =x® 42 .S, (2.57)
where: 4, — step size,
s, — vector in the direction x**? —x®
Gradient methods differ only in the way they determine 4,
and S, are usually found by solving the optimization problem
f(x) in the direction of S, . The direction S, depends on how the
function f(x) is approximated. To do this, a sequence of points
{x(k)}, k=0,1,... is constructed that satisfy the following
condition:
f(x®9)< £(x®), k=0,1,.... (2.58)
Sequence points {x, } are calculated according to the following
rule:
Xt =x* -4 -grad f(x,), k=0,1,...  (2.59)
The step size 4, is not changed as long as the function

decreases at the points of the sequence. The condition for the
end of the calculations is the fulfillment of the inequalities (the

gradient grad f(x*) is close to zero):
df (x®)

Oles, =12, (2:60)
X

or

||grad f(x(")l| = i{m} <ég, (2.61)

) dx;
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where: & — given a fairly small number
If the decrease condition is not met, the step size is usually

reduced by half ukJ_zk ) until the inequality

f(x*)< f(x*) is met and the calculations are continued.
Calculations to determine the optimal content of
ingredients in the studied mixture were performed using

software [112]. The researcher begins work with the program
0.44

by specifying on the form the starting point: ¢ _| 0551,
0.005

0.001
initial values of variables, step size A, =0.0000001 and a
sufficiently small number & =0.01 (Fig. 2.43).

Onmidmizayia

hi= 00080001

xInoa.= 44 x2now.= 0,551 X3nom= 6,005 xdnow=0.01
Oduncanm
xdonm.= xZonm.= xdonm.= xdonm.=
3nauenna GuXionIX @yukiiin npu ommusatonny X1, X2, X3, x4

vi= ¥2= =

| Fanucamn ¢ dhrasa |

| Apyx pesyavmamy ]

| Buio |

Fig. 2.43 — Form “Single-criteria optimization” — entering initial
values

Constraints on the problem variables are read from the file
x.txt (Fig. 2.44).
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!\ x. ixt - BAoKkHOT

©ain  Mpaeka  QOpMAT

p.2045
0.550.8
0.001 0.01
0.005 0.04

Fig. 2.44 — File x.txt for entering constraints on problem variables

In this case, the program performs the following steps of the
algorithm:

- finds partial derivatives at the point x© ;

- checks the stopping condition at grad f(x(k));

- calculates the value of the function at the initial point x®,
F(x9) ;

- takes a step along the antigradient direction
x® =x©@ -2 -grad f(x?);

- calculates the value of the function at the point x® . F(x®) .

- since  F(xW)>F(x©®), the step size decreases:

_0.0000001

A =0.00000005-

- repeats the described operations until grad f(x®)<¢.
At the last step of the algorithm we obtain the following
0.43598

values: NG 0.54298 |,
0.00099

0.02003

At the same time, the optimal values of the problem variables
appear in the corresponding fields (Fig. 2.45).
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Onmumizayina
h= o,0000001

xInow.=044 x2nou.= 0,551 x3noq.=0 005 x4now.=001

Oouneanmn

xlonm.= 0,435980456 xZonu.=6,542986846 x3onm.= o,000997824 xdonmn.= 0,02003487¢

3HadennA uxionux GyHRuiL npu onmumansaux x1, x2, x3, x4

yI=|1,837809101 y2=|371,295809876 ¥3= 0658709531

[ 3anucamn ¢ Parn ]

l JpyK pesyavmamy ]

[ Buxio ]

Fig. 2.45 — Form “Single-criteria optimization” — calculation
results

Thus, using the developed software, the values of the

variables X;, X,, X3, X, are calculated, which are the optimal

contents of the ingredients of the studied four-component
mixture, and the initial parameters VY1, VY2, Y3, which
characterize the dimensional characteristics of PP microfibrils
and the properties of polypropylene complex threads based on
them.

The optimal composition of the PP/SPA/silica/siloxane
composition for the formation of monofilaments, calculated
using computer programs at all stages of the study, is as
follows, wt. %: polypropylene - 43.6; copolyamide - 54.3;
silica - 0.1; siloxane - 2.0. It was established that the
simultaneous introduction of nanosized silica and organosilicon
liquid into the melt of the PP/SPA mixture in an amount of 1.9
and 0.1 wt. %, respectively, made it possible to implement
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microfibrillar morphology in the four-component composition.
At the same time, the polymer content of the dispersed phase in
it is almost 1.5 times higher than in the unfilled one. Increasing
the concentration of the fiber-forming polymer in the
composition is one of the prerequisites for increasing economic
indicators and environmental safety of the production of fine-
fiber materials by processing polymer mixtures. Studies of the
properties of complex microfibrillar threads formed from a
composition of optimal composition have shown their
significant improvement. Thus, the breaking strength is at the
level of the best samples of traditional textile PP threads. The
introduction of siloxane into the composition provides a
significant increase in the resistance of the studied threads to
self-erasure (1027 versus 516 thousand cycles for textile
threads). Modified complex threads are also characterized by
improved hygienic properties - their hygroscopicity is 17 times
higher than that of conventional textile threads.

Conclusion

To study four-component compositions and establish the
relationship between the content of ingredients and the
properties of products obtained from them, several software
programs have been developed that allow you to build an
experimental plan, develop mathematical models, check their
adequacy and optimize the composition of the mixture. The
experimental plan for the influence of the ratio of ingredients in
a four-component heterogeneous system is created using
software using the simplex-centroid method. In this case, the
placement of candidate points in the simplex, which is a
tetrahedron, is carried out according to the McLean-Anderson
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algorithm, and the necessary and sufficient number of plan
points is 14. By calculating the coordinates of the points of the
experimental plan, the content of which is subject to two-sided
restrictions, a mathematical model of the process under study is
obtained in the form of a system of regression equations. The
model is used to find the optimal composition by the method of
multi-criteria optimization. For this, the multi-criteria problem
is converted to a solution by the method of single-criteria linear
convolution. The transition from a conditional optimization
problem with constraints to an unconstrained problem is
carried out using the penalty function method. The optimal
values of the composition ingredient content and the initial
parameters characterizing the properties of products based on it
are determined using the gradient method with step splitting.

The developed software was used, in particular, to
optimize the composition of the polypropylene/copolyamide
mixture, which contained silica as a nanofiller and
organosilicon as a compatibilizer. It was found that the
combined action of both modifying additives with a total
content of 2.0 wt. % allows to implement the process of
forming PP microfibrils in the SPA matrix and to achieve an
increase in the concentration of the dispersed phase component
to almost 45 wt. %, which is a prerequisite for improving the
economic and environmental performance of production.
Complex polypropylene threads obtained from a composition
with an optimal composition are characterized by increased
strength, resistance to self-erasing and hygroscopicity.

Thus, the developed programs for mathematical
planning and analysis of experiments in the study of three- and
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four-component compositions can be used to study any mixture
systems and will help accelerate the implementation of
research and obtain products with the best performance from
them.

In conclusion, a few words about the prospects for
further development of the polymer composites industry
and software for their creation. Despite the fact that various
types of composites have been used by mankind since ancient
times, the goal was usually to overcome some of the
shortcomings of one of the components, for example,
increasing the strength of clay bricks by adding straw. Today,
with a scientifically sound composition of the mixture,
materials with completely new properties or with significantly
improved indicators are created. In recent years, polymer
composites, including nano-filled ones, have played an
increasingly important role, the total production volume of
which is of the same order as the production of all metals. At
the same time, the number of varieties of polymer materials
exceeds the number of different types of steel. The variety of
polymer mixtures and composites will further strengthen this
trend in the future. The main reason for the growing interest in
such materials in the world is due to the combination of low
cost and small mass with excellent properties. The main
problem when using polymer compositions, from the point of
view of ecology, is the complexity of utilization and return to
secondary processing of production waste. The solution to
these problems can be the search for new types of
biotechnology for the production of both traditional and new
types of monomers and polymers (including fiber-forming
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ones). As an example of the implementation of fundamentally
new technologies, polylactide fibers, films and nanofilled
plastics obtained on the basis of natural polysaccharides can be
cited. At the same time, there are no complex environmental
problems due to the non-toxicity of the initial and finished
products and the possibility of their recycling, assimilation and
biodegradation in the environment.

The current state and prospects for the development of
polymer composite materials, including nanofilled fibrous
ones, are considered, indicating that the advantages of polymer
mixtures and composites are a prerequisite for their further
widespread use in various industries, as well as in everyday life
and, most importantly, in medicine. The research and creation
of new types of polymer composites will be greatly facilitated
by the widespread use of mathematical modeling methods
using software.
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ADDITION 1
PROGRAM LISTING
Basic procedures and functions for implementing
interactive experiment planning for a ternary mixture

double minmax(double mas[], int len, bool findmax)
{

double a;

a = mas[0];

for(inti=0;i<len; i++)

if(findmax == false)

if(mas[i] < a) a = mas]i];
}

else
if(mas[i] > a) a = mas[i];

¥

return a;

}

void DrawGraph(TImage *image)

{
X0 = floor(image->Width/2);
y0 = floor(image->Height/2);
image->Canvas->Pen->Color = cIBlack;
image->Canvas->Pen->Width = 2;

image->Canvas->MoveTo(x0,0);
image->Canvas->LineTo(x0,image->Height);
image->Canvas->MoveT0(0,y0);
image->Canvas->LineTo(image->Width, y0);
image->Canvas->Pen->Color = cIBlue;
image->Canvas->Pen->Width = 1;
for(inti=1;1<200; i++)

{

image->Canvas->MoveTo(x0+i*mashx,0);
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image->Canvas->LineTo(x0+i*mashx,image->Height);
image->Canvas->MoveTo(0,y0+i*mashy);
image->Canvas->LineTo(image->Width, yO+i*mashy);
}
for(inti=1;i<200; i++)
{
image->Canvas->MoveTo(x0-i*mashx,0);
image->Canvas->LineTo(x0-i*mashx,image->Height);
image->Canvas->MoveTo(0,y0-i*mashy);
image->Canvas->LineTo(image->Width, y0-i*mashy);
}
image->Canvas->Pen->Color = cIRed;
image->Canvas->Pen->Width = 2;
image->Canvas->MoveTo(x0-a/2*mashx,y0); /[ X1
image->Canvas->LineTo(x0+a/2*mashx,y0); // X3 (otnoxumu 5
BIIPaBo)
image->Canvas->LineTo(x0,y0-(sqrt(3)/2 * a)*mashy);
image->Canvas->LineTo(x0-a/2 *mashx,y0); // 3aMkHyIH
1IX1,X2,X3
image->Canvas->TextOutA(x0-a/2*mashx-20,y0,"x1");
image->Canvas->TextOutA(x0,y0-(sqrt(3)/2 * a)*mashy-
15,"x2");
image->Canvas->TextOutA(x0+a/2*mashx+15,y0,"x3");

image->Canvas->Pen->Color = cIBlack;
image->Canvas->Pen->Width = 2;

}

void ClearGraph(TImage *image)

{
image->Canvas->Pen->Mode=pmCopy;
image->Canvas->Pen->Color = clWhite;
image->Canvas->MoveTo(0,0);
image->Canvas->FillRect(Rect(0,0,image->Width, image-

>Height));
}
void __ fastcall TForm1::ButtonDrawClick(TObject *Sender)

{
ClearGraph(Imagel);
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DrawGraph(Imagel);
GroupBox1->Visible=true;
Form1->ScrollBox1->HorzScrollBar->Position=1111;
Form1->ScrollBox1->VertScrollBar->Position=961;
Form1->ScrollBox1->Height/2;
}

double max(double x, double y)

if(x<y){
returny;

¥

return X;

}
double min(double x, double y)

if (x>y){
returny;

}

return Xx;

}
bool thc(double x, double y, double z, double w, double a, double b)

double k, c,res;
bool flag=false;
if (z==x){
return (a == X && b >= min(y, w) && x <= max(y, w));
}
k=(Ww-y)/(z-x),
c=y-k*x;
res=a*k+c;
flag=floor(b*10000000) == floor(res*10000000);
return flag;

void __ fastcall TForm1::Button1Click(TObject *Sender)

ClearGraph(lmagel);
DrawGraph(Imagel);
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Button4->Enabled=true;

double kx1,ky1,kx2,ky2,kx3,ky3;

kx1 =(double) StrToFloat(Forml->Editl->Text);

kyl =(double) StrToFloat(Forml->Edit2->Text);

kx2 = (double)StrToFloat(Forml1->Edit3->Text);

ky2 = (double)StrToFloat(Forml1->Edit4->Text);

kx3 =(double) StrToFloat(Forml1->Edit5->Text);

ky3 = (double)StrToFloat(Forml1->Edit6->Text);
float r=0.0001;

float rr=0.01f;

float rrr=0.001f;

float rrrr=0.0001f;

double t=0.0001;

double tt=0.01;

double ttt=0.001;

double tttt=0.0001;

float k;

int I=r;

DrawRegions(kx1,ky1,kx2,ky2,kx3,ky3);

double eps=0.000;

if(kx1==0)

{
kx1=kx1+eps;
}

if(kx2==0)

{
kx2=kx2+eps;
}

if(kx3==0)

{
kx3=kx3+eps;
}

if(kx1==1)

{
kx1=kx1-eps;
}
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if(kx2==1)

{

kx2=kx2-eps;

}

if(kx3==1)

{

kx3=kx3-eps;

}

float test;

test=100*kx1;

float test2=0.00002,test3;
test2=100*test2;

Kfx1 = kx1;

Kfyl = ky1;

Kfx2 = kx2;

Kfy2 = ky2;

Kfx3 = kx3;

Kfy3 = ky3;

double ky;

double kx;
kx=((a/2)*mashx);
ky=(sqrt(3)/2 * a)*mashy;

// Pernon X2:

double RegX2[5],RegY2[5];
RegX2[0] = x0-(kx*(1-ky2));
RegY2[0] = y0-(ky*(ky2));
RegX2[1] = x0+(kx*(1-ky2));
RegY2[1] = y0-(ky*(ky2));
RegX2[2] = x0+(kx*(1-kx2));
RegY2[2] = y0-(ky*(kx2));
RegX2[3] = x0-(kx*(1-kx2));
RegY?2[3] = y0-(ky*(kx2));
RegX2[4] = RegX2[0]; RegY2[4] = RegY2[0];
// Pernon X1:

double RegX1[5],RegY1[5];
RegX1[0] = x0-(kx*kx1);
RegY1[0] = y0-(ky*(1-kx1));
RegX1[1] = x0-(kx*ky1);
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ky3)));

kx3)));

RegY1[1] = yO-(ky*(1-ky1));

if(ky1>0.50) RegX1[2] = x0-((kx/0.5)*fabs((0.5-ky1)));
else if(ky1<0.51) RegX1[2] = x0+((kx/0.5)*(0.5-ky1));
RegY1[2] = y0;

if(kx1>0.5) RegX1[3] = x0-((kx/0.5)*fabs((0.5-kx1)));
else if(kx1<0.51) RegX1[3] = x0+((kx/0.5)*(0.5-kx1));
RegVY1[3] = y0;

RegX1[4] = RegX1[0]; RegY1[4] = RegY1[0];

// Pernon X3:

double RegX3[5],RegY3[5];

RegX3[0] = x0+(kx*(kx3));

RegY3[0] = y0-(ky*(1-kx3));

RegX3[1] = x0+(kx*(ky3));

RegY3[1] = y0-(ky*(1-ky3));

if(ky3>0.5) RegX3[2] = x0+((kx/0.5)*fabs(0.5-ky3));
else if(ky3<0.51) RegX3[2] = x0-((kx/0.5)*fabs((0.5-

RegY3[2] = y0;
if(kx3>0.5) RegX3[3] = x0+((kx/0.5)*fabs(0.5-kx3));
else if(kx3<0.51) RegX3[3] = x0-((kx/0.5)*fabs((0.5-

RegY3[3] = y0;
RegX3[4] = RegX3[0]; RegY3[4] = RegY3[0];

// MairoeMo ToukH 1 niHii perioniB X1,X2,X3:

//DrawFigure(RegX2,RegY2,4,cIBlack,clGreen);
//DrawFigure(RegX1,RegY1,4,clIBlack,clGreen);
//DrawFigure(RegX3,RegY3,4,clIBlack,clGreen);

1

double

peretinX1[10],peretinY1[10],peretinX2[10],peretinY2[10],

peretinX3[10],peretinY3[10],

peretinX4[10],peretinY4[10];

int ff1 = 0, ff2 = 0, ff3 = 0,ff4=0;
NullMas(peretinX1,10);
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NullMas(peretinY1,10);
NullMas(peretinX2,10);
NullMas(peretinY2,10);
NullMas(peretinX3,10);
NullMas(peretinY3,10);
NullMas(peretinX4,10);
NullMas(peretinY4,10);
bool Fl=false;
CrossTwoPoligon2(5,RegX2,RegY2,5,RegX1,RegY1,ff1,per
etinX1,peretinY1);
CrossTwoPoligon2(5,RegX3,RegY3,5,RegX2,RegY2,ff2,peretinX2,
peretinY2);
CrossTwoPoligon2(5,RegX1,RegY1,5 RegX3,RegY3,ff3,per
etinX3,peretinY3);
double SumaPeretX[30],SumaPeretY[30];
NullMas(SumaPeretX,30);
NullMas(SumaPeretY,30);
int countsuma=0;
for (int i=0;i<ff3;i++){
bool
InFigure=thc(RegX2[0],RegY2[0],RegX2[1],RegY?2[1],peretinX3[i],
peretinY3[i]);
bool flagl=false;
bool flag2=false;
flagl=peretinX3[i]>=min(RegX2[0], RegX2[1]);
flag2=peretinX3[i]<=max(RegX2[0], RegX2[1]);
double test=0;
test=max(RegX2[0],RegX2[1]);
if(InFigure &&flagl && flag2){
/I Forml->Imagel->Canvas->Pen->Color=cIBlack;
I Forml->Imagel->Canvas->Ellipse(peretinX3[i]-
5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5);
SumaPeretX[countsuma]=peretinX3[i];
SumaPeretY [countsuma]=peretin Y 3[i];
countsuma++;
peretinX3[i]=0;
peretinY3[i]=0;
3}
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for (int i=0;i<ff3;i++){
bool
InFigure=thc(RegX2[1],RegY?2[1],RegX2[2],RegY?2[2],peretinX3[i],
peretinY3[i]);
if(InFigure && peretinX3[i]>=min(RegX2[1], RegX2[2])
&& peretinX3[i]l<=max(RegX2[1], RegX2[2])){
/l Form1->Imagel->Canvas->Pen->Color=clGreen;
1 Forml->Imagel->Canvas->Ellipse(peretinX3[i]-
5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5);
SumaPeretX[countsuma]=peretinX3[i];
SumaPeretY [countsuma]=peretinY3[i];
countsuma++;
peretinX3[i]=0;
peretinY3[i]=0;} }
for (int i=0;i<ff3;i++){
bool
InFigure=thc(RegX2[2],RegY2[2],RegX2[3],RegY2[3],peretinX3[i],
peretinY3[i]);
if(InFigure && peretinX3[i]>=min(RegX2[2], RegX2[3])
&& peretinX3[i]l<=max(RegX2[2], RegX2[3])){
/I Forml->Imagel->Canvas->Pen->Color=cIBlue;
I Forml->Imagel->Canvas->Ellipse(peretinX3[i]-
5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5);
SumaPeretX[countsuma]=peretinX3[i];
SumaPeretY [countsuma]=peretinY3[i];
countsumat+;
peretinX3[i]=0;
peretinY3[i]=0; } }
for (int i=0;i<ff3;i++){
bool
InFigure=thc(RegX2[3],RegY2[3],RegX2[4],RegY2[4],peretinX3[i],
peretinY3[i]);
if(InFigure && peretinX3[i]>=min(RegX2[3], RegX2[4])
&& peretinX3[i]J<=max(RegX2[3], RegX2[4]))}{
/I Forml1->Imagel->Canvas->Pen->Color=clYellow;
1l Form1->Imagel->Canvas->Ellipse(peretinX3[i]-
5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5);
SumaPeretX[countsuma]=peretinX3[i];
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SumaPeretY [countsuma]=peretinY3[i];
countsumat+;
peretinX3[i]=0;
peretinY3[i]=0; } }
//DrawFigure(peretinX3,peretinY3,ff3,cIRed,cIBlue);
double vx[5],vy[5]; bool FI2[5];
int kk=0;
for(int i=0;i<5;i++)
FI2[i]=0 i}
for (int j=0;j<ff3;j++) {
for (int i=0;i<4;i++){

FI2[i]=PointCrossTwoL ine2(RegX2[i],RegY2[i],RegX2[i+1],RegY2
[i+1],peretinX3[j],peretinY3[j],peretinX3[j],peretin’Y3[j]+10000,vx[
kK], vy[KK]);
if (FI2[i]){
kk++;
}
} if(kk==1){
/I Forml1->Imagel->Canvas->Pen->Color=clWhite;
SumaPeretX[countsuma]=peretinX3[j];
SumaPeretY [countsuma]=peretinY3[]];
countsumat+;
I Forml->Imagel->Canvas->Ellipse(peretinX3][j]-
5,peretinY3[j]-5,peretinX3[j]+5,peretinY3[j]+5);
}
for(int d=0;d<5;d++) {
FI2[d]=0 i}
kk=0;

for (int i=0;i<ffl;i++){

bool
InFigure=thc(RegX3[0],RegY3[0],RegX3[1],RegY3[1],peretinX1[i],
peretinY1[i]);

bool flagl=false;

bool flag2=false;

flagl=peretinX1[i]>=min(RegX3[0], RegX3[1]);

flag2=peretinX1[i]<=max(RegX3[0], RegX3[1]);
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double test=0;
test=max(RegX3[0],RegX3[1]);
if(InFigure &&flagl && flag2){
/I Forml->Imagel->Canvas->Pen->Color=cIBlack;
1l Forml->Imagel->Canvas->Ellipse(peretinX1[i]-
5,peretinY1[i]-5,peretinX1[i]+5,peretin Y1[i]+5);
SumaPeretX[countsuma]=peretinX1[i];
SumaPeretY [countsuma]=peretinY1[i];
countsuma++;
peretinX1[i]=0;
peretinY1[i]=0;
1}
for (int i=0;i<ff1;i++){
bool
InFigure=thc(RegX3[1],RegY3[1],RegX3[2],RegY3[2],peretinX1[i],
peretinY1[i]);
if(InFigure && peretinX1[i]>=min(RegX3[1], RegX3[2])
&& peretinX1[i]l<=max(RegX3[1], RegX3[2])){
/I Forml1->Imagel->Canvas->Pen->Color=clGreen;
I Forml->Imagel->Canvas->Ellipse(peretinX1]i]-
5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5);
SumaPeretX[countsuma]=peretinX1[i];
SumaPeretY [countsuma]=peretin Y 1[i];
countsumat+;
peretinX1[i]=0;
peretinY1[i]=0;} }
for (int i=0;i<ffl;i++){
bool
InFigure=thc(RegX3[2],RegY3[2],RegX3[3],RegY3[3],peretinX1[i],
peretinY1[i]);
if(InFigure && peretinX1[i]>=min(RegX3[2], RegX3[3])
&& peretinX1[i]l<=max(RegX3[2], RegX3[3])){
/I Forml->Imagel->Canvas->Pen->Color=cIBlue;
I Forml->Imagel->Canvas->Ellipse(peretinX1][i]-
5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5);
SumaPeretX[countsuma]=peretinX1[i];
SumaPeretY [countsuma]=peretinY1[i];
countsuma++;
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peretinX1[i]=0;
peretinY1[i]=0; } }
for (int i=0;i<ffl;i++){
bool
InFigure=thc(RegX3[3],RegY3[3],RegX3[4],RegY3[4],peretinX1[i],
peretinY1[i]);
if(InFigure && peretinX1[i]>=min(RegX3[3], RegX3[4])
&& peretinX1[i]l<=max(RegX3[3], RegX3[4])){
/I Forml->Imagel->Canvas->Pen->Color=clYellow;
1 Forml->Imagel->Canvas->Ellipse(peretinX1[i]-
5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5);
SumaPeretX[countsuma]=peretinX1[i];
SumaPeretY [countsuma]=peretinY1[i];
countsumat+;
peretinX1[i]=0;
peretinY1[i]=0; } }
//DrawFigure(peretinX3,peretinY3,ff3,cIRed,cIBlue);
/* double vx[5],vy[5]; bool FI2[5];
int kk=0;  */

for(int i=0;i<5;i++)
FI2[i]=0 i}
for (int j=0;j<ffl;j++) {
for (int i=0;i<4;i++){
FI2[i]=PointCrossTwoL.ine2(RegX3[i],RegY3[i],RegX3[i+1

1,RegY3[i+1],peretinX1[j],peretinY1[j],peretinX1[j]-
10000, peretin Y 1[j],vX[kK],vy[KK]);

if (FI2[I){

kk++;

}
} if(kk==1){
/I Forml->Imagel->Canvas->Pen->Color=clWhite;
SumaPeretX[countsuma]=peretinX1[j];
SumaPeretY [countsuma]=peretinY1[j];
countsuma++;
1l Form1->Imagel->Canvas->Ellipse(peretinX1[j]-

5,peretinY1[j]-5,peretinX1[j]+5,peretinY1[j]+5);
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}
for(int d=0;d<5;d++) {

FI2[d]=0 i}

kk=0;

}
/IDrawFigure(peretinX1,peretinY1,ff1,clWhite,cIRed);
1

CrossTwoPoligon2(5,RegX3,RegY 3,f2,peretinX2,peretinY2,ff4,per
etinX4,peretinY4);
I/l DrawFigure(peretinX4,peretinY4,ff4,clWhite,cIRed);
/I PointsPeretin(RegX1,RegY1,peretinX2, peretinY2, ff2);

[/l DrawFigure(peretinX2,peretinY2,ff2,cIRed,cIRed);
for (int i=0;i<ff2;i++){
bool
InFigure=thc(RegX1[0],RegY1[0],RegX1[1],RegY1[1],peretinX2]i],
peretinY2[i]);
if(InFigure && peretinX2[i]>=min(RegX1[0], RegX1[1])
&& peretinX2[i]l<=max(RegX1[0], RegX1[1]))X
/I Forml1->Imagel->Canvas->Pen->Color=cIBlack;
I Forml->Imagel->Canvas->Ellipse(peretinX2]i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5);
SumaPeretX[countsuma]=peretinX2[i];
SumaPeretY [countsuma]=peretinY2[i];
countsumat+;
peretinX2[i]=0;
peretinY2[i]=0;
1}
for (int i=0;i<ff2;i++){
bool
InFigure=thc(RegX1[1],RegY1[1],RegX1[2],RegY1[2],peretinX2[i],
peretinY2[i]);
if(InFigure && peretinX2[i]>=min(RegX1[1], RegX1[2])
&& peretinX2[i]l<=max(RegX1[1], RegX1[2])){
/I Forml->Imagel->Canvas->Pen->Color=clGreen;
1l Form1->Imagel->Canvas->Ellipse(peretinX2[i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5);
SumaPeretX[countsuma]=peretinX2[i];
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SumaPeretY [countsuma]=peretinY2[i];
countsumat+;
peretinX2[i]=0;
peretinY?2[i]=0;} }
for (int i=0;i<ff2;i++){
bool
InFigure=thc(RegX1[2],RegY1[2],RegX1[3],RegY1[3],peretinX2[i],
peretinY2[i]);
if(InFigure && peretinX2[i]>=min(RegX1[2], RegX1[3])
&& peretinX2[i]l<=max(RegX1[2], RegX1[3])){
/I Forml1->Imagel->Canvas->Pen->Color=cIBlue;
1 Forml->Imagel->Canvas->Ellipse(peretinX2[i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretin Y 2[i]+5);
SumaPeretX[countsuma]=peretinX2[i];
SumaPeretY [countsuma]=peretinY2[i];
countsuma++;
peretinX2[i]=0;
peretinY2[i]=0; } }
for (int i=0;i<ff2;i++){
bool
InFigure=thc(RegX1[3],RegY1[3],RegX1[4],RegY1[4],peretinX2[i],
peretinY2[i]);
if(InFigure && peretinX2[i]>=min(RegX1[3], RegX1[4])
&& peretinX2[i]l<=max(RegX1[3], RegX1[4])){
/I Forml1->Imagel->Canvas->Pen->Color=clYellow;
I Forml->Imagel->Canvas->Ellipse(peretinX2]i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5);
SumaPeretX[countsuma]=peretinX2[i];
SumaPeretY [countsuma]=peretinY2[i];
countsuma++;
peretinX2[i]=0;
peretinY2[i]=0; } }
//DrawFigure(peretinX3,peretinY3,ff3,cIRed,cIBlue);
// double vx[5],vy[5]; bool FI2[5];
/I int kk=0;

for(int i=0;i<5;i++)
FI2[i]=0 i}
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for (int j=0;j<ff2;j++) {
for (int i=0;i<4;i++){
I2[i]=PointCrossTwoLine2(RegX1[i],RegY1[i],RegX1[i+1],
RegY1[i+1],peretinX2[j],peretinY2[j],peretinX2[j]+10000,peretinY2
01, vx[kK], vy[KK]);
if (FI2[I){

kk++;

}
} if(kk==1){
/I Forml->Imagel->Canvas->Pen->Color=clWhite;
SumaPeretX[countsuma]=peretinX2[j];
SumaPeretY [countsuma]=peretinY2[]];
countsumat+;
1 Forml->Imagel->Canvas->Ellipse(peretinX2[j]-
5,peretinY2[j]-5,peretinX2[j]+5,peretin Y 2[j]+5);

for(int d=0;d<5;d++) {

FI2[d]=0 i}

kk=0;

}

[* for (int j=0;j<ffl;j++) {
for (int i=0;i<4;i++){
FI2[i]=PointCrossTwoL.ine2(RegX3[i],RegY3[i],RegX3[i+1

1,RegY3[i+1],peretinX1[j],peretinY1[j],peretinX1[j]+10000,peretinY
1[i1,vx[kK].vy[kK]);

if (FI2[i]){

kk++;

}

}
if(kk<1){
peretinX1[j]=0;
peretinY1[j]=0;
}
kk=0;
r
CrossTwoPoligon2(5,RegX3,RegY 3,ff2,peretinX2,peretinY
2,14, peretinX4,peretinY4);
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// ———=—=—=—=—=—=—=—==—=======
/*  PointsPeretin(RegX3,RegY3,peretinX1, peretinY1,

ffl);
PointsPeretin(RegX1,RegY1,peretinX2, peretinY2, ff2);
PointsPeretin(RegX2,RegY2,peretinX3, peretinY3, ff3);
*/
double SumaPeretX2[30],SumaPeretY?2[30];
NullMas(SumaPeretX2,30); double
SumaPeretX3[30],SumaPeretY3[30]; NullMas(SumaPeretX3,30);
NullMas(SumaPeretY2,30);
NullMas(SumaPeretY3,30);
/* double SumaPeretX[30],SumaPeretY[30];
NullMas(SumaPeretX,30);
NullMas(SumaPeretY’,30);
double SumaPeretX2[30],SumaPeretY?2[30];
double SumaPeretX3[30],SumaPeretY3[30];
int d=0;
NullMas(SumaPeretX,30);
NullMas(SumaPeretY,30);
NullMas(SumaPeretX2,30);
NullMas(SumaPeretY2,30);
NullMas(SumaPeretX3,30);
NullMas(SumaPeretY3,30);
PointsUnite(peretinX1,peretinY1,peretinX2,peretinY2,
peretinX3,peretinY3,SumaPeretX,SumaPeretY,d); */
NullMas(FX,10);
NullMas(FY,10);
FN=0;
DelRepeatPoints(SumaPeretX,SumaPeretY,10);
Path(SumaPeretX,SumaPeretY,countsuma);
PointsUnite2(SumaPeretX,SumaPeretY,SumaPeretX2,Suma
PeretY2,FN);
DelRepeatPoints(SumaPeretX2,SumaPeretY2,10);
int FN2=0;
for(int i=0; i<FN; i++){
if (SumaPeretX2[i]!=0 && SumaPeretY21=0)

{
SumaPeretX3[FN2]=SumaPeretX2[i];
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SumaPeretY3[FN2]=SumaPeretY2[i];
FN2++;
3}

FN=FN2;

Path(SumaPeretX3,SumaPeretY3,FN);

1
PointsUnite2(SumaPeretX2,SumaPeretY2,SumaPeretX3,SumaPeret
Y3,FN2);

DrawFigure(SumaPeretX3,SumaPeretY3,FN2,cIBlack,clBla

ck);

if (FN2==3){

double g,qq,99d;

int e,ee,eee;

bool r=false,rr=false,rrr=false;

g=(SumaPeretX3[0]);

qg=(SumaPeretX3[1]);

ggg=(SumaPeretX3[2]);

e=(SumaPeretY3[0]*100000);

ee=(SumaPeretY3[1]*100000);

eee=(SumaPeretY3[2]*100000);

if (r && rr && rrr)
EN2=1;
}
}
if (FN2==0)
{

Edit13->Color=cIRed;
Button4->Enabled=false; Error2=false;
Errorl=true;

Button11->Visible=true;

}

else if (FN2==1 || FN2==2)

{

Edit13->Color=cIRed;
Button4->Enabled=false;

Errorl=false;

Error2=true; Buttonll->Visible=true;
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} else
{
Edit13->Color=clGreen;
Button4->Enabled=true;
Errorl=false;
Error2=false; Buttonl1->Visible=false;
}
/Il EN = countsuma;
for(inti=0;i<FN2;i++)
{
FX[i] = SumaPeretX3[i];
FYT[i] = SumaPeretY3[i];
T}
[* for (int i=0;i<d;i++){
if (1390!=floor(SumaPeretYTi]))
{ SumaPeretY[i]=0;
SumaPeretX[i]=0;}
T
/* for (int i=0;i<5;i++){
bool
InFigure=thc(RegX3[3],RegY3[3],RegX3[4],RegY3[4],SumaPeretX
[i],SumaPeretYTi]);
/* if(InFigure) {
if (((RegX3[0]<= SumaPeretX[i])&& (RegX3[1]<=
SumaPeretX[i]))||
((RegX3[0]>= SumaPeretX[i])&& (RegX3[1]>=
SumaPeretX[i]))) {
SumaPeretX[i]=0;
}
3+
/* if (MInFigure) { SumaPeretX[i]=0;
SumaPeretY[i]=0;
} 3
/* bool FI,FL;
double Xv,Yv;
int counter=0,num=0,dd=0;
double MaxX3,MinX3,MaxY3,MinY3;
MaxX3=MaxMin(4,RegX3,1);
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MaxY3=MaxMin(4,RegY3,1);
MinX3=MaxMin(4,RegX3,-1);
MinY3=MaxMin(4,RegY3,-1);
FI=PointCrossTwoLine2(RegX3[3],RegY3[3],RegX3[4],Re
gY3[4],SumaPeretX[2],SumaPeretY[2],SumaPeretX[2]+1000,Suma
PeretY[2],Xv,YV);

for (int i=0;i<d;i++) {

FL=(MaxX3<SumaPeretX[i] || MinX3>SumaPeretX[i]) ||
(MaxY3<SumaPeretYTi] || MinY3>SumaPeretY[i]);

if (FL) { SumaPeretX[i]=0;
SumaPeretY[i]=0;
counter++;
)
num=d-counter;
counter=0;
for (int i=0;i<d;i++) {

FL=RegX2[3]>SumaPeretX[i] I
RegX2[2]<SumaPeretX[i] | RegY2[0]>SumaPeretYTi] |
RegY2[3]<SumaPeretYTi];

if (FL) { SumaPeretX[i]=0;
SumaPeretY[i]=0;
counter++;
)
counter=0;
num=d-counter;
for (int i=0;i<d;i++) {

FL=RegX1[1]>SumaPeretX[i] I
RegX1[3]<SumaPeretX[i] | RegY1[0]>SumaPeretYT[i] |
RegY1[3]<SumaPeretYT[i];

if (FL) { SumaPeretX[i]=0;

SumaPeretY[i]=0;

counter++;

3}

num=d-counter;

for (int i=0;i<d;i++){

if (SumaPeretX[i]'=0 && SumaPeretY[i]!=0){
SumaPeretX2[dd]=SumaPeretX[i];
SumaPeretY?2[dd]=SumaPeretY[i];
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dd++;
}
}
int mm=0;
for (int i=0;i<4;i++) {
for (int j=0;j<dd;j++)
{
FI=PointCrossTwoLine2(RegX3[i],RegY3[i],RegX3[i+1],Re
gY3[i+1],SumaPeretX2[j],SumaPeretY2[j],SumaPeretX2[j]+1000,S
umaPeretY2[j],Xv,YV);
bool
InFigure=thc(RegX3[i],RegY3[i],RegX3[i+1],RegY3[i+1],SumaPer
etX2[j],SumaPeretY2[j]);
bool
InFigure2=thc(RegX1[i],RegY1[i],RegX1[i+1],RegY1[i+1],SumaPe
retX2[j],SumaPeretY2[j]);
if(InFigure==true || InFigure2==true)

SumaPeretX3[mm]=SumaPeretX2[]];
SumaPeretY3[mm]=SumaPeretY2[j];
mm++;

/* if (FI && 'InFigure)
{
SumaPeretX2[j]=0;
SumaPeretY2[j]=0;
[Imm++;
Y
I}

I}
/I Path(SumaPeretX2,SumaPeretY?2,dd);
Il if (RegX3[1]<SumaPeretX[14] &&

void DrawRegions(double kx1, double kyl,double
kx2,double ky2, double kx3, double ky3)

{

double eps = 100; // KinbKicTh YacTHH
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double kxx1,kyyl,kxx3,kyy3;
/* kxx1=1-kx1;

kyyl=1-kyl;

kxx3 =1 - kx3;

kx1=(kx1*eps);
kyl=(kyl*eps);
kx2=(kx2*eps)+1;
ky2=(ky2*eps)+1;
kx3=(kx3*eps);
ky3=(ky3*eps);
double ky;

double kx;
kx=((a/2)*mashx);
ky=(sqrt(3)/2 * a)*mashy;
[l -mmmmmm e
[l dst X1,X2,X3:

Il X2:
Forml->Imagel->Canvas->Pen->Color = cIRed;
for(double i=kx2;i<=ky2;i++) {
Forml->Imagel->Canvas->MoveTo(x0-
(kx/eps)*(eps+1-i),y0-((ky/eps)*(i-1)));
Forml->Imagel->Canvas-
>LineTo(x0+(kx/eps)*(eps+1-i),y0-((ky/eps)*(i-1)));
}

IIX1:

Forml->Imagel->Canvas->Pen->Color = clGray;
for(double i=kx1;i<=(kyl);i++) {
if(kx1<(eps/2+2))

{

Form1->Imagel->Canvas->MoveTo(x0-(kx/eps)*(i),y0-

((ky/eps)*(eps-i)));
Forml->Imagel->Canvas-
>LineTo(x0+((kx/(eps/2))*((eps/2+1)-i-1)),y0);
}

if(kx1>(eps/2+1))
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{
Forml1->Imagel->Canvas->MoveTo(x0-(kx/eps)*(i),y0-
((ky/eps)*(eps-i)));
Forml->Imagel->Canvas->LineTo(x0-
((kx/(eps/2))*fabs(((eps/2+1)-i-1))),y0);
}

}
/IX3:

Forml->Imagel->Canvas->Pen->Color = clGreen;
for(double i=kx3;i<=(ky3);i++) {
if(kx3<(eps/2+2))
{
Forml->Imagel->Canvas->MoveTo(x0-(kx/eps)*(-i),y0-
((ky/eps)*(eps-i)));
Forml->Imagel->Canvas->LineTo(x0-
((kx/(eps/2))*((eps/2+1)-i-1)),y0);
}

if(kx3>(eps/2+1))
{
Forml->Imagel->Canvas->MoveTo(x0-(kx/eps)*(-i),y0-
((ky/eps)*(eps-i)));
Forml->Imagel->Canvas-
>LineT o(x0+((kx/(eps/2))*fabs(((eps/2+1)-i-1))),y0);
}

¥

bool PointCrossTwoLine(float Xa,float Ya,float Xb,float
Yb,float Xc,float Yc,float Xd,float Yd,float &XO,float &Y0)

{

float
Al,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0;

inti;

bool B;

B=False;

Al=YDb-Ya;

B1=Xa-Xb;

Cl=Ya*Xb-Xa*Yb;
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A2=Yd-Yc;
B2=Xc-Xd;
C2=Yc*Xd-Xc*Yd;
Ra=A2*Xa+B2*Ya+C2;
Rb=A2*Xb+B2*Yb+C2;
Rc=A1*Xc+B1*Yc+C1,
Rd=A1*Xd+B1*Yd+C1;
Rab=Ra*Rb;
Rcd=Rc*Rd;
if (Ra==0 && Rcd<0)
{X0=Xa;Y0=Ya;B=true;}
else if (Rb==0 && Rcd<0)
{X0=Xb;YO0=Yb;B=true;}
else if (Rc==0 && Rab<0)
{X0=Xc;Y0=Yc;B=true;}
else if (Rd==0 && Rab<0)
{X0=Xd;Y0=Yd;B=true;}
else if (Ra==0 && Rc==0 && Rb!=0 &&

Rd!=0)
{X0=Xc;Y0=Yc;B=true;}
else if (Rb==0 && Rc==0 && Ral=0 &&
Rd!=0)
{X0=Xc;Y0=Yc;B=true;}
else if (Ra==0 && Rd==0 && Rb!=0 &&
Rc!=0)
{X0=Xd;Y0=Yd;B=true;}
else if (Rb==0 && Rd==0 && Ra!=0 &&
Rc!=0)
{X0=Xd;Y0=Yd;B=true;}
else
{
B=((Rcd<0)&&(Rab<0));
if (B)
{

D0=A1*B2-A2*B1,
D1=C2*B1-C1*B2;
D2=C1*A2-C2*Al,
X0=D1/D0;
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Y0=D2/D0;

}
}
return B;
}
bool PointCrossTwoLine2(double Xa,double Ya,double
Xb,double Yb,double Xc,double Yc,double Xd,double Yd,double
&X0,double &Y0)

double
Al,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0;
int i
bool B;
B=False;
Al=Yb-Yaq;
B1=Xa-Xb;
Cl=Ya*Xb-Xa*Yb;
A2=Yd-Yc;
B2=Xc-Xd;
C2=Yc*Xd-Xc*Yd;
Ra=A2*Xa+B2*Ya+C2;
Rb=A2*Xb+B2*Yb+C2;
Rc=A1*Xc+B1*Yc+Cl1;
Rd=A1*Xd+B1*Yd+C1;
Ra=floor(Ra);
Rb=floor(Rb);
Rc=floor(Rc);
Rd=floor(Rd);
Rab=Ra*Rb;
Rcd=Rc*Rd;
Rab=floor(Rab);
Rcd=floor(Rcd);
if(Ra==-1) Ra=0;
if(Rb ==-1) Rb =0;
if(Rc ==-1) Rc =0;
if(Rd==-1) Rd=0;
if(Rab ==-1) Rab = 0;
if(Rcd == -1) Red = 0;
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if (Ra==0 && Rcd<0)
{X0=Xa;Y0=Ya;B=true;}
else if (Rb==0 && Rcd<0)
{X0=Xb;YO0=Yb;B=true;}
else if (Rc==0 && Rab<0)
{X0=Xc;Y0=Yc;B=true;}
else if (Rd==0 && Rab<0)
{X0=Xd;Y0=Yd;B=true;}
else if (Ra==0 && Rc==0 && Rb!I=0 &&

Rd!=0)
{X0=Xc;Y0=Yc;B=true;}
else if (Rb==0 && Rc==0 && Ra!=0 &&
Rd!=0)
{X0=Xc;Y0=Yc;B=true;}
else if (Ra==0 && Rd==0 && Rb!=0 &&
Rc!=0)
{X0=Xd;Y0=Yd;B=true;}
else if (Rb==0 && Rd==0 && Ra!=0 &&
Rc!=0)

{X0=Xd;Y0=Yd;B=true;}
else

{
B=((Rcd<0)&&(Rab<0));
if (B)
{
D0=A1*B2-A2*B1;
D1=C2*B1-C1*B2;
D2=C1*A2-C2*Al;
X0=D1/D0;
Y0=D2/D0;
}
}
return B;
}
bool cross(double Xa,double Ya,double Xb,double
Yh,double Xc,double Yc,double Xd,double Yd,double &XO0,double
&Y0)
{
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double
Al,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0;

inti;

bool B;

B=False;

Al=Ya-Yb;

B1=Xb-Xa;

Cl=Xa*Yb-Xb*Ya;

A2=Yc-Yd;

B2=Xd-Xc;

C2=Xc*Yd-Xd*Yc;

Ra=A2*Xa+B2*Ya+C2;

Rb=A2*Xb+B2*Yb+C2;

Rc=A1*Xc+B1*Yc+Cl1;

Rd=A1*Xd+B1*Yd+C1;

D0=A1*B2-A2*B1;
D1=C2*B1-C1*B2;
D2=C1*A2-C2*Al;
X0=D1/D0;
Y0=D2/DO0;
return B;
}
bool CrossTwoPoligon (int KilksPointPol1,float
XPoll[],float YPolLl[],
int KilksPointPol2,float XPol2[],float YPol2[],int &Vt,float
XvO0[],float YVO[])

bool Fl=false;
float Xv,Yv;
for (int k=0;k<KilksPointPoll-1;k++)

for (int m=0;m<KilksPointPol2-1;m++)

{
FI=PointCrossTwoLine(XPol1[m],YPoll[m],XPoll[m+1],Y

Pol1[m+1],XPol2[K], YPolI2[K],XPol2[k+1],YPol2[k+1],XV,YV);
if (FI)
{if (Vt==0)
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{ XvO[Vt] = Xv;
YVO[Vt] = Yv;
Vi++,
}
if(Xv!=XVvO[Vt-1]||YVv!=YVO[Vt-1])
{ XvO[Vt] = Xv;
YVO[Vt] = Yv;
Vi++;
}
}
Hf (Vt>=5)
Fl=true;
return FlI;
}
bool  CrossTwoPoligon2  (int  KilksPointPoll,double
XPol1[],double YPoll[],
int  KilksPointPol2,double  XPol2[],double  YPol2[],int
&Vt,double XvO[],double YVOI[])

bool Fl=false;
double Xv,Yv;
for (int k=0;k<KilksPointPoll-1;k++)
for (int m=0;m<KilksPointPol2-1;m++)
{
FI=PointCrossTwoLine2(XPoll[m],YPoll[m],XPoll[m+1],
YPol1[m+1],XPol2[K],YPol2[K],XPol2[k+1],YPol2[k+1],XV,YV);
if (FI)
{if (Vt==0)
{ XVO[Vt] = Xv;
YVO[VLt] = Yy,
Vi++;

if(XvI=XvO[Vt-1]||YVv!=YVO[Vt-1])
{ XvO[Vt] = Xv;
YVO[VL] = Yy,
Vi++;
}
}
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Hf (Vt>=5)
Fl=true;
return FI;

}
void NullMas(double mas[], int n)

{

for(inti=0;i<n; i++)

masli] = 0;
}
}
void DelRepeatPoints(double masX[],double masYT], int n)
{
for(inti=0;i<n; i++)
{

for(int j = i+1; j <n; j++)

if((masX[i] == masX]j]) && (masY[i] == masY[j]))
{
masX[j] = 0;
masY[j] = 0;
}
}
}

for(inti=0;i<n-1;i++)
if(masX[i] == 0 && masY][i] == 0)
if(masX[i+1] '= 0 && masY[i+1] = 0)

masX[i] = masX[i+1];
masY[i] = masY[i+1];
masX[i+1] = 0;
masY[i+1] = 0;
}
}
}
}
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void DrawFigure(double pointX[],double pointY[],int n,
TColor colline, TColor colpoint)

Form1->Imagel->Canvas-

>MoveTo(pointX[0],pointY[0]);

for(inti=0;i<n;i++)

{
Forml->Imagel->Canvas->Pen->Color = colpoint;
Forml->Imagel->Canvas->Ellipse(pointX[i]-

5,pointY/[i]-5,pointX[i]+5,point Y[i]+5);

//[Form1->Imagel->Canvas->Ellipse(pointX[i]-

(5+i)*2,p0int Y[i]-(5+1)*2, pointX[i]+(5+i)*2, pointY [i]+(5+i)*2);

Forml->Imagel->Canvas->Pen->Color = colline;
Form1->Imagel->Canvas-

>LineTo(pointX[i],pointY[i]);
}

Forml->Imagel->Canvas->LineTo(pointX[0],pointY[0]);
}
void Path(double X[], double YT], int n)
{
double Ycdet2;
double Otbor1[10],0tbor2[10],0tbor1Y[10],0tbor2Y[10];
NullMas(Otbor1,10);
NullMas(Otbor2,10);
NullMas(OtborlY,10);
NullMas(Otbor2Y,10);
ParamDet3(n,X,Y,Ycdet2);
int g1=0,92=0;
for(int i=0;i<n;i++)

if (Ycdet2>=Y[i])
{

Otbor1[g1]=X[i];
Otbor1Y[g1]=VY[i];
gl++;

}

else

{
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Otbor2[g2]=X][i];
Otbor2Y[g2]=VTi];
g2++;

}

}
double tempG=0;

double tempGG=0;
int fI=0;
while (true)
{
fl=1;
for(inti=0;i<gl-1;i++)
{
if ((Otborl[i] < Otbor1[i+1]) && Otborl[i]'=0)
{

double temp = Otbor1[i];
Otbor1[i] = Otborl]i + 1];
Otborl[i + 1] = temp;

double temp2 = OtborlYT[i];
Otborl1YTi] = OtborlYTi + 1];
OtborlYTi + 1] = temp2;

fl=0;
}

}

if (fl == 1) break;
}
fI=0;
while (true)

fl=1;

for(inti=0;i<g2-1;i++)
if(Otbor2[i] < Otbor2[i+1] && Otbor2[i]'=0)
{

double temp = Otbor2[i];
Otbor2[i] = Otbor2[i + 1];
Otbor2[i + 1] = temp;
double temp2 = Otbor2YT[i];
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Otbor2YTi] = Otbor2YTi + 1];
Otbor2YTi + 1] = temp2;

fl=0;
¥
¥
if (fl == 1) break;
¥
for(int i=0;i<gl;i++)
{

X[i]=Otbor1[i];
Y[i]=Otbor1Y[i];
}
for(int i=g1,j=g2-1;i<gl+g2;i++,j--)
{
X[i]=Otbor2[j];
Y[i]=Otbor2Y[j];

}
}
void PointsUnite(double peretinX1[],double
peretinY1[],double peretinX2[],double peretinY2[],
double peretinX3[],double peretinY3[],double
SumaPeretX[],double SumaPeretYT[], int &d)
{
for(int i=0;i<10;i++)
{

if(peretinX3[i]'=0 && peretinY3[i]!=0)
{

SumaPeretX[d]=peretinX3[i];
SumaPeretY [d]=peretinY3]i];
d++;
}
}
for(int i=0;i<10;i++)
{
if(peretinX2[i]!'=0 && peretinY2[i]!=0)
{
SumaPeretX[d]=peretinX2[i];
SumaPeretY [d]=peretinY2[i];
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d++;

}
for(int i=0;i<10;i++)

if(peretinX1[i]'=0 && peretinY1[i]!=0)
{
SumaPeretX[d]=peretinX1[i];
SumaPeretY[d]=peretinY1]i];
d++;
}

}

}
void PointsUnite2(double peretinX3[],double

peretinY3[],double SumaPeretX[],double SumaPeretY[], int &d)

for(int i=0;i<30;i++)

{
if(peretinX3[i]'=0 && peretinY3[i]!=0)
{

SumaPeretX[d]=peretinX3[i];
SumaPeretY [d]=peretinY3]i];
d++;
}

}

}
void PointsPeretin(double RegX1[],double RegY1[], double

peretinX2[], double peretinY2[], int ff2)
{

bool fak=false;

int kI=0;

double ho2=0,hoho2=0;

for(int j=0;j<ff2;j++){

for(int i=0;i<4;i++)

{
fak=PointCrossTwoLine2(RegX1[i],RegY1[i],RegX1[i+1],RegY1][i
+1],peretinX2[j],peretinY2[j],peretinX2[j],peretinY2[j]+5000,ho2,ho
ho2);
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if (fak==true)
{kl++; }

if (kI>1){

fak =false;

kl=0;

peretinX2[j]=0;
peretinY2[j]=0;

break;

}

}

if(kl==0)

{
peretinX2[j]=0;
peretinY2[j]=0;

}
if(kl==1)
{

kl=0;

}
} kI=0;

}
void __ fastcall TForm1::Button2Click(TObject *Sender)
{

/* Forml1->PageControl1l->ActivePage=TabSheet2;

ClearGraph(Image2);

/IDrawGraph(Image2);
Form1->ScrollBox2->Width/2;
Form1->ScrollBox2->Height/2;

double XcE,YcE,XcIm3,YcIm3;

XcE=Image2->Width/2;

YcE=Image2->Height/2;

KilksPointDet = 0;

for(inti=0;i<10; i++)

{

selectedpoints[i] = false;

}

ParamDet();

ParamModeli();
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BuildIm2(XcE,YcE); */
Form2->Close();

void ParamDet()
{
MaxX=MaxMin(FN,FX,1);
MaxY=MaxMin(FN,FY,1);
MinX=MaxMin(FN,FX,-1);
MinY=MaxMin(FN,FY,-1);
DIDet=MaxX-MinX;
ShDet=MaxY-MinY;
XcDet=(MaxX+MinX)/2;
YcDet=(MaxY+MinY)/2;
}
void ParamDet2(int KilkT, double X2[], double Y2[], double
&DIDet2, double &ShDet2)
{
double MaxX2=MaxMin(KilkT,X2,1);
double MaxY2=MaxMin(KilkT,Y2,1);
double MinX2=MaxMin(KilkT,X2,-1);
double MinY2=MaxMin(KilkT,Y2,-1);
DIDet2=MaxX2-MinX2;
ShDet2=MaxY2-MinY2;
}
void ParamDet3(int KilkT, double X2[], double Y2[],double
&YcDet)
{
double MaxY2=MaxMin(KilkT,Y2,1);
double MinY2=MaxMin(KilkT,Y2,-1);
YcDet=(MaxY2+MinY2)/2;
}
void ParamDet4(int KilkT, double X2[], double Y2[],double
&YcDet,double &XcDet,double &DL,double &Sh)
{
double MaxY2=MaxMin(KilkT,Y2,1);
double MinY2=MaxMin(KilkT,Y2,-1);
double MaxX2=MaxMin(KilkT,X2,1);
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double MinX2=MaxMin(KilkT,X2,-1);
YcDet=(MaxY2+MinY2)/2;
XcDet=(MaxX2+MinX2)/2;
DL=MaxX2-MinX2;
Sh=MaxY2-MinY2;
}
double MaxMin(int n,double Z[],int p)
t
int i;
double q;
0=Z[0];
for (i=1;i<n;i++)
if (p*a<p*Z[i]) a=Z[i];
return g;

void ParamModeli()
{
double Xmax,Ymax,Xmin,Ymin;
Xmax=MaxX; Xmin=MinX;
Ymax=MaxY; Ymin=MinY;
DIMod=Xmax-Xmin;
ShMod=Ymax-Ymin;
XcMod=(Xmax+Xmin)/2;
YcMod=(Ymax+Ymin)/2;
}
void Buildim2(double XcE,double YCE)
t
inti,j;
mx=(Form1->ScrollBox2->Width)/DIMod,;
my=(Form1->ScrollBox2->Height)/ShMod,;
mxylm2=mx;
if (my<mx)mxylm2=my;

Graphlm2(FN,FX,FY,XcMod,YcMod, XcE, YCE,
mxylmz2, 0, 2);

/I for (j=0;j<FN: j++)
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I/Elipse(FX[j],FY[j]l,2,XcMod,YcMod, XcE, YcE,
mxylm?2);

}

void Buildim3(double XcE,double YcE)

t
intij;
mx=(Form1->ScrollIBox2->Width)/DIMod;
my=(Form1->ScrollIBox2->Height)/ShMod;
mxylm2=mx;
if (my<mx)mxylm2=my;

GraphIm3(FN,FX,FY,XcMod,YcMod, XCcE, YCE,
mxylmz2, 0, 2);

[l for (j=0;j<FN; j++)
lElipse(FX[j1,FYIjl,2,XcMod,YcMod, XcE, YcE,
mxylm?2);
}
void Graphlm2(int n, double X[], double Y]], double Xcf,
double Ycf,

{

double Xce, double Yce, double mxy,int g, int p)

int j;

ky =1;

kx =1;

double Xr[300],Yr[300];
NullMas(Xr,300);
NullMas(Yr,300);

1

double** figura;
double** matrObert;
figura = new double*[n];
matrObert = new double*[n];
for(inti=0;i<n;i++)
{
figura[i] = new double[3];
matrObert[i] = new double[3];
}
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for(inti=0;i<n;i++)
{
figura[i][0] = X[i;
figura[i][1] = YTil;
figura[i][2] = 1;
}
double DIDet3, ShDet3,mashtY3,mashtX3 ;
ParamDet2(n, X, Y, DIDet3, ShDet3);
int kut=60;
mashtY3 = DIDet3/ShDet3;
mashtX3 = ShDet3/DIDet3;

[*for(inti=0;i<n;i++)
{
figura[i][0] = Xr[i];
figura[i][1] = Yr[i];
figura[i][2] = 1;
}
double alpha =120 * M_PI/ 180, // B paaianax.
matrObert = OberD(alpha, Xcf,Ycf);
figura = MultipleMatrix(figura, matrObert, n);

for(inti=0;i<n;i++)
{
X[i] = figura[i][0];
Y[i] = figura[i][1];
} ParamDet2(n, X, Y, DIDet3, ShDet3);
mashtY3 = DIDet3/ShDet3;
mashtX3 = ShDet3/DIDet3;
if (mashtY3 > 20)
{
ky = int(mashtY3)/3;
Il ky=5;
}
for(j=0;j<n;j++)
{
Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce;
Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce;
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/* for(inti=0;i<n;i++)

Xr[i] = figura[i][0];
Yr[i] = figura[i][1];
)
[*double DIDet2, ShDet2;
ParamDet2(n, X, Y, DIDet2, ShDet2);
if (ShDet2==0) {
ShDet2=10;
}
mashtY = DIDet2/ShDet2;
mashtX = ShDet2/DIDet2;
if (floor(mashtX)==floor(mashtX3))

vxod=true;
alpha = kut * M_PI/ 180; // B pamianax.
matrObert = OberD(alpha, Xcf,Ycf);
figura = MultipleMatrix(figura, matrObert, n);
for(inti=0;i<n;i++)
{

X[i] = figura[i][0];

Y([i] = figura[i][1];

}

double DIDet2, ShDet2;
ParamDet2(n, X, Y, DIDet2, ShDet2);
mashtY = DIDet2/ShDet2;

mashtX = ShDet2/DIDet2;

}
if(mashtY > 20)
{
ky = int(mashtY)/3;
I ky=5;
}
if(mashtX > 20) {kx = 20;

}
for(j=0;j<n;j++)
{
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Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce;
Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce;
}

1

1

for(inti=0;i<n;i++)
{
figura[i][0] = Xr[i];
figura[i][1] = Yr[i];
figura[i][2] = 1;
} double alpha2 ;
if (vxod){
alpha2 = -(2*kut) * M_PI/ 180; / B pamianax.
}
else
{ alpha2 =-(kut) * M_PI/ 180; // B paxianax.

}
matrObert = OberD(alpha2,Xcf,Ycf);

figura = MultipleMatrix(figura, matrObert, n);
for(inti=0;i<n;i++)
{
Xr[i] = figura[i][0];
Yr[i] = figura[i][1];
}

for(j=0;j<n;j++)

{

Xr2[j]=Xr[j];

Yr2[j]=Yr(il;

}
Form1->Image2->Canvas->Pen->Width=p;
Form1->Image2->Canvas->Pen->Mode=pmCopy;
switch(q)

{

case 1:Forml->Image2->Canvas->Pen-

>Color=clRed:;break;
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case 2:Form1->Image2->Canvas->Pen-
>Color=clIBlue;break;

case 3:Forml1->Image2->Canvas->Pen-
>Color=clGreen;break;
case 4:Forml->Image2->Canvas->Pen-

>Color=clGray;break;
default:Form1->Image2->Canvas->Pen-
>Color=clIBlack;

}
for(j=0;j<n;j++)
{

if (j==0)Form1->Image2->Canvas-
>MoveTo(Xr[j],Yr[j]);
else Form1->Image2->Canvas->LineTo(Xr[j], Yr[j]);

}
Forml->Image2->Canvas->LineTo(Xr[0],Yr[0]);

for (j=0;j<FN; j++)
Forml->Image2->Canvas->Ellipse(Xr2[j]-5,Yr2[j]-
5,Xr2[j]+5,Yr2[j]+5);

}
double angle( int x1, int y1, int X2, int y2)
{

return acos(
(x1*x2+yl1*y2)/(sqrt((double)x1*x1+yl*yl)*sqrt((double)x2*x2+y2
*y2)));

}
void Graphlm3(int n, double X[], double Y]], double Xcf,
double Ycf,

{

double Xce, double Yce, double mxy,int g, int p)

int j;

ky =1;

kx =1;

double Xr[300],Yr[300];
NullMas(Xr,300);
NullMas(Yr,300);
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1

double** figura;

double** matrObert;

figura = new double*[n];
matrObert = new double*[n];

for(inti=0;i<n;i++)

{
figura[i] = new double[3];
matrObert[i] = new double[3];

}

for(inti=0;i<n;i++)

{
figural[i][0] = X[i];
figura[i][1] = YTi];
figura[i][2] = 1;

}
bool ok=false;
int kil=0;

double DIDet3, ShDet3,mashtY3,mashtX3 ;
int kut=60;
double alpha;
while ('ok)

{

ParamDet2(n, X, Y, DIDet3, ShDet3);
mashtY3 = DIDet3/ShDet3;
mashtX3 = ShDet3/DIDet3;
if (mashtY3>5)

{
ky=int(mashtY3)/3;
ok=true;

break;

}

if (kil==3){
ok=true;

break;

}
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Kil++;
alpha = kut * M_P1/ 180; // B panianax.
matrObert = OberD(alpha, Xcf,Ycf);
figura = MultipleMatrix(figura, matrObert, n);
for(inti=0;i<n; i++)
{
X[i] = figura[i][0];
Y[i] = figura[i][1];
}
}
for(j=0;j<n;j++)
{
Xrli1=(X[[]-Xcf)*mxy/1.2*kx+Xce;
Yr[i]=(Y[i]-Ycf)*mxy/1.2*ky+Yce;

for(inti=0;i<n;i++)
{

figura[i][0] = Xr[i];

figura[i][1] = Yr[i];

figura[i][2] = 1;

double alpha2=0;
for(int i=0;i<kil;i++){

alpha2 =- kut* M_P1/ 180;
matrObert = OberD(alpha2,Xcf, Ycf);

figura = MultipleMatrix(figura, matrObert,
kutpov=Kil;

for(inti=0;i<n;i++)
{

Xr[i] = figura[i][0];

Yr[i] = figura[i][1];
}

/* matrObert = OberD(alpha,Xcf,Ycf);

figura = MultipleMatrix(figura, matrObert, n);
for(inti=0;i<n;i++)
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{
X[i] = figura[i][0];
Y[i] = figura[i][1];
}
double DIDet2, ShDet?2;
ParamDet2(n, X, Y, DIDet2, ShDet2);
if (ShDet2==0) {
ShDet2=10;
}
mashtY = DIDet2/ShDet2;
mashtX = ShDet2/DIDet2;
if (floor(mashtX)==floor(mashtX3))

vxod=true;
alpha =kut * M_PI/ 180; / B panmiaHax.
matrObert = OberD(alpha, Xcf,Ycf);
figura = MultipleMatrix(figura, matrObert, n);
for(inti=0;i<n;i++)
{

X[i] = figura[i][0];

Y[i] = figura[i][1];

}
double DIDet2, ShDet2;
ParamDet2(n, X, Y, DIDet2, ShDet2);

mashtY = DIDet2/ShDet2;
mashtX = ShDet2/DIDet2;

}
if(mashtY > 20)

{
ky = int(mashtY)/3;

Il ky=5;
if(mashtX > 20) {kx = 20;
for(j=0;j<n};j++)
{Xr[i]z(X[i]-ch)*mxyll.2*kx+Xce;
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Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce;

/!
for(inti=0;i<n;i++)
{
figura[i][0] = Xr[i];
figura[i][1] = Yr[i];
figura[i][2] = 1;
} double alpha2 ;
if (vxod){
alpha2 = -(2*kut) * M_PI/ 180; // B pagianax.
}
else
{ alpha2 =-(kut) * M_PI/ 180; // B paxianax.

}
matrObert = OberD(alpha2,Xcf, Ycf);

figura = MultipleMatrix(figura, matrObert, n); */
/* for(inti=0;i<n;i++)
{
Xr[i] = figura[i][0];
Yr[i] = figura[i][1];

3
I/
for(j=0;j<n;j++)
{
Xr2[j]=Xr[j];
Yr2[j]=Yr[l;

}
double Xfind, Yfind,DIfind,Shfind;
ParamDet4(n,Xr,Yr,Yfind, Xfind,DIfind,Shfind);
Form1->ScrollBox2->HorzScrollBar-
>Position=(Xfind+(DIfind/2))*0.66;//1111;
Form1->ScrollBox2->VertScrollBar-
>Position=(Yfind+(Shfind/4))*0.66;//961,;
Form1->Image2->Canvas->Pen->Width=p;
Form1->Image2->Canvas->Pen->Mode=pmCopy;
switch(q)
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{

case 1:Forml->Image2->Canvas->Pen-
>Color=cIRed;break;

case 2:Form1->Image2->Canvas->Pen-
>Color=clIBlue;break;

case 3:Forml1->Image2->Canvas->Pen-
>Color=clGreen;break;

case 4:Forml1->Image2->Canvas->Pen-

>Color=clGray;break;
default:Form1->Image2->Canvas->Pen-
>Color=clIBlack;

}
for(j=0;j<n;j++)
{

if (j==0)Form1->Image2->Canvas-
>MoveTo(Xr[j1,Yr[iD;
else Forml1->Image2->Canvas->LineTo(Xr[j], Yr[j]);

}
Forml->Image2->Canvas->LineTo(Xr[0],Yr[0]);

for (j=0;j<FN; j++)
Forml->Image2->Canvas->Ellipse(Xr2[j]-5,Yr2[j]-
5,Xr2[j]+5,Yr2[j]+5);
}

bool pnpoly(int npol, double xp[], double yp[], double x,
double y)

bool ¢ = false;
for (inti=0, j=npol - 1;i<npol; j=i++)

_ if ((ypli] <=y) && (y < yplD) Il ((ypli] <=Y) && (y <
yp[i]))) && _ _
_ _(((ypD] - ypli]) = 0) && (x > ((xp[j] - xp[i]) * (y -
yp[i]) 7 (yp[i] - yp[II]) +xp[i]))))
c=lc;

¥
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return c;

} _

void _ fastcall ~ TForml::lmage2MouseDown(TObject
*Sender,

{
int Xr,Yr;
Image2->Canvas->Pen->Mode=pmXaor;
Image2->Canvas->Pen->Color=clGreen;
Image2->Canvas->Pen->Width=2;

TMouseButton Button, TShiftState Shift, int X, int Y)

double FX2[10],FY2[10];

for(inti = 0; i < 10; i++)

{
FX2[i] = 0; FY2[i] = 0;
FX2[i] =Xr2[i]; //floor(Xr2[i]);
FY2[i] =Yr2[i]; //floor(Yr2[i]);

}
if(Button==mbLeft && KilksPointDet < 3)
{

if(pointselectmode == false)

{

// TlepeBipka, 110 TOYKA 3HAXOTUTHCS Y Pirypi.
bool InFigure = pnpoly(FN,FX2,FY2, X, Y);
if(InFigure == true)

{

Xd[indexPoints]=X; Xt[indexPoints]=X;
Yd[indexPoints]=Y; Yt[indexPoints]=Y;

if (indexPoints==0){

Image2->Canvas-
>MoveTo(Xt[indexPoints], Yt[indexPoints]);

Form1->Image2->Canvas->Ellipse(Xt[indexPoints]-
5,Yt[indexPoints]-5,Xt[indexPoints]+5, Yt[indexPoints]+5);

}

else

{Image2->Canvas-
>LineTo(Xt[indexPoints], Yt[indexPoints]); Form1->Image2-
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>Canvas->Ellipse(Xt[indexPoints]-5, Yt[indexPoints]-
5,Xt[indexPoints]+5, Yt[indexPoints]+5); }
indexPoints++;

¥

else if(pointselectmode == true)

{

// 3Hax0IMMO HaOIMKYy TOUKY (irypu.
double dist[10];

for(inti=0; i <FN; i++)

{

dist[i] = sgrt(pow(FX2[i]-X,2)+pow(FY2[i]-Y,2));

double min = dist[0];
int index = 0;
for(inti=1; i <FN;i++)

if(dist[i] < min && dist[i] '= 0)

min = dist[i];
index = i;

}

if(selectedpoints[index] == false)

{

// 3amaIroeMo TOUKY:

Forml->Image2->Canvas->Brush->Color = cIRed;
Form1->Image2->Canvas->Brush->Style = bsSolid;

Forml->Image2->Canvas-
>FloodFill(FX2[index],FY2[index],cIBlack,fsBorder);

Form1->Image2->Canvas->Brush->Color = clWhite;

Xd[indexPoints]=FX2[index];
Xt[indexPoints]=FX2[index];

Yd[indexPoints]=FY?2[index];
Yt[indexPoints]=FY2[index];

if (indexPoints==0)Image2->Canvas-

>MoveTo(Xt[indexPoints], Yt[indexPoints]);
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else Image2->Canvas-
>LineTo(Xt[indexPoints],Yt[indexPoints]);

indexPoints++;

selectedpoints[index] = true;

¥
¥

}
else if(Button==mbRight)

if(pointselectmode == true && indexPoints>0)
{
//[Form1->Image2->Canvas->Brush->Color = clWhite;
/IForm1->Image2->Canvas->Brush->Style = bsSolid;
/[Form1->Image2->Canvas-
>FloodFill(Xt[indexPoints], Yt[indexPoints],cIBlack,fsBorder);

/lNmage2->Canvas-
>MoveTo(Xt[indexPoints], Yt[indexPoints]);
indexPoints--;
Image2->Canvas-
>LineTo(Xt[indexPoints], Yt[indexPoints]);
}

if(pointselectmode == false && indexPoints>0)
{
indexPoints--;
Image2->Canvas-
>LineTo(Xt[indexPoints], Yt[indexPoints]);

}

if(indexPoints > 2)
{

Xd[indexPoints]=Xd[0];
Yd[indexPoints]=Yd[0];
Image2->Canvas->LineTo(Xt[0],Yt[0]);
KilksPointDet=indexPoints;
indexPoints=0;
Button5->Enabled=true;
Edit14->Color=clGreen;
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void __fastcall TForm1::Button3Click(TObject *Sender)
{
if (L11){
ShowMessage("Error!!!");

else if (L111)

{

ShowMessage("Error!!! *);

}

/*  Forml->PageControll->ActivePage=TabSheetl;

//OGepHeHa QyHKITIS:
double Xg[300],Yg[300];
NullMas(Xg,300);
NullMas(Yg,300);
double XcE=Image2->Width/2;
double YcE=Image2->Height/2;

1

double** figura;
double** matrObert;
figura = new double*[KilksPointDet];
matrObert = new double*[KilksPointDet];
int kut=0;
if (vxod)
{kut=120;
}
else
{kut=60;
}
for(int i = 0; i < KilksPointDet; i++)
{
figura[i] = new double[3];
matrObert[i] = new double[3];
}
for(int i = 0; i < KilksPointDet; i++)
{
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figura[i][0] = Xd[i];

figura[i][1] = Yd[i];

figura[i][2] = 1;
}
double alpha2 = kut * M_PI/ 180; / B panianax.
matrObert = OberD(alpha2,XcMod,YcMod);

figura = MultipleMatrix(figura, matrObert,
KilksPointDet);
for(int i = 0; i < KilksPointDet; i++)
{
Xd[i] = figura[i][0];
Yd[i] = figura[i][1];
}

for(int j=0;j<KilksPointDet;j++)

1

Xg[i1=((Xd[j]-XcE)/(mxylm2*kx/1.2))+XcMod,;
Yo[il=((Yd[j]-YcE)/(mxylm2*ky/1.2))+YcMod,;

}
// ————=—=—=—=—=—=—=—=—=—=—=—=—=—=—====
for(int i = 0; i < KilksPointDet; i++)
{
figura[i][0] = Xg[il;
figura[i][1] = Yg[il;
figura[i][2] = 1;
}

double alpha3 = -kut * M_PI/ 180; // B pamianax.
matrObert = OberD(alpha3,XcMod,YcMod);

figura = MultipleMatrix(figura, matrObert,
KilksPointDet);
for(int i = 0; i < KilksPointDet; i++)
{
Xg[i] = figura[i][0];
Yq[i] = figura[i][1];
}

I
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1

DrawFigure(Xg,Yg,KilksPointDet,clWhite,cIBlue);

double Xg2[300], Yg2[300];
NullMas(Xg2,300);
NullMas(Yg2,300);
kx=((a/2)*mashx);
ky=(sqrt(3)/2 * a)*mashy;

double X1,X2,X3;
double Y1,Y2,Y3;
X1 = x0-a/2*mashx;
Y1 =y0;
X2 =x0;
Y2 = y0-(sqrt(3)/2 * a)*mashy;
X3 = x0+a/2*mashx;
Y3 =y0;
// double MatrOb[7][3];
double** MatrOb;
double** MatrOb2;
double** MatrOb3;
double** base;
MatrOb = new double*[7];
MatrOb2 = new double*[3];
MatrOb3 = new double*[3];
base = new double*[3];
// matrObert = new double*[KilksPointDet];
for(inti=0;i<7;i++)
{
MatrObli] = new double[3];
/I matrObert[i] = new double[3];
}
for(inti=0;i<3;i++)
{
base[i] = new double[3];
MatrOb2[i] = new double[7];
MatrOb3[i] = new double[7];
/I matrObert[i] = new double[3];

¥
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MatrOb [0][0]=1,;
MatrOb[0][1]=0;
MatrOb[0][2]=0;
MatrOb[1][0]=0;
MatrOb[1][1]=1;
MatrOb[1][2]=0;
MatrOb[2][0]=0;
MatrOb[2][1]=0;
MatrOb[2][2]-1;
MatrOb[3][0]=double(1.0/2);
MatrOb[3][1]=double(1.0/2);
MatrOb[3][2]=0;
MatrOb[4][0]=double(1.0/2);
MatrOb[4][1]=0;
MatrOb[4][2]=double(1.0/2);
MatrOb[5][0]=0;
MatrOb[5][1]=double(1.0/2);
MatrOb[5][2]=double(1.0/2);
MatrOb[6][0]=double(1.0/3);
MatrOb[6][1]=double(1.0/3);
MatrOb[6][2]=double(1.0/3);
double kx1[5];
double kx2[5];
double kx3[5];
NullMas(kx1,5);
NullMas(kx2,5);
NullMas(kx3,5);
for(int i=0;i<7;i++)
{
for(intj=0;j<3;j++)
{ StringGrid1->Cells[0][i+1]=i+1;
StringGrid2->Cells[0][i+1]=i+1;
I StringGridl-
>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]);
StringGridl-
>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]);
/I StringGrid2->Cells[4][i+1]=FloatToStr(sumali]);

¥
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}
for(int i = 0; i < KilksPointDet; i++)

{
Coef(X1,Y1,X2,Y2,X3,Y3,Xg[il, Y[il,kx[i],kx2[i],kx3]i]):;

1

¥

Memol->Text = "Koopaunaru: ";
Memol->Lines->Add("");
double base2[3][3];
for (int i=0;i<3;i++){
base[0][i]=kx1[i];
base[1][i]=kx2[i];
base[2][i]=kx3[i];
}

for (int i=0;i<3;i++)

{

for (int j=0;j<3;j++)

{

base2[i][j]=base[i][j];

/* base[0][0]=1;
base[0][1]=2;
base[0][2]=3;
base[1][0]=4;
base[1][1]=5;
base[1][2]=6;
base[2][0]=4;
base[2][1]=5;
base[2][2]=4; */

/* doubleres[3][7]; double res2[3][7];

double op;

[* op=determinant(base,3);

{

for(int i=0;i<3;i++)
for (int j=0;j<3;j++)
if((i+])%2==0)
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{

base2[i][j]J=minor(i,j,base,3); //funnlk(Bee,n);
}

else

{
base2[i][j]=-(minor(i,j,base,3));

}
}
}
for(int i=0;i<3;i++)
{

for(int j=0;j<3;j++)
gase[i]U]=baseZ[i][i]:
}

for(int i=0;i<3;i++)

for(int j=0;j<3:j++)

{
base2[i][j]=base[j][i];
}

}

for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

{
base2[i][j]=base2[i][j]/op;
}

}
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)

{
base[i][j]=base2[i][j];
}
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P
/* double suma[7];
for (int i=0;i<7;i++)
{
for (int j=0;j<3;j++)
{

MatrOb2[j][i]=MatrObl[i][j];
1}
[* for (int i=0;i<3;i++)

{

for (int j=0;j<7;j++)

{
=res[i][jl;
3
/*  MatrOb3=MultipleMatrix2(base,MatrOb2,3);
for (int i=0;i<7;i++)

{
for (int j=0;j<3;j++)

{
MatrOb[i][j]=MatrOb3[j][i];
1}
suma[0]=0;
suma[1]=0;
suma[2]=0;
suma[3]=0;
suma[4]=0;
suma[5]=0;
suma[6]=0;

for (int i=0;i<7;i++)
{
for (int j=0;j<3;j++)

{
suma[i]+=MatrObl[i][j];
1

[* for (int i=0;i<3;i++)
{
for (int j=0;j<7;j++)
{
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res2[i][j]=MatrOb3[i][jl;
1}

[* for (int i=0;i<7;i++)

{

for (int j=0;j<3;j++)

{

MatrObljl[i]=res[il[il;
)3
[* for(int i=0;i<7;i++)
{
for(intj=0;j<3;j++)
{ StringGrid1->Cells[0][i+1]=i+1,;
StringGrid2->Cells[0][i+1]=i+1;
1 StringGridl-
>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][iD);
StringGrid2-
>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]);
StringGrid2->Cells[4][i+1]=FloatToStr(sumali]);
}
}

for(int i=0;i<3;i++)

for(intj=0;j<3;j++)
{ StringGrid3->Cells[0][i+1]=i+1;

StringGrid3->Cells[j+1][i+1]=FloatToStr(base[i][j]);
}
}
Memol->Lines->Add("");
for(int i = 0; i < KilksPointDet; i++)
{
Memol->Text = Memol->Text +  "3HaueHHs
koopauHatu" + FloatToStrF(i+1, ffGeneral, 6, 6)+" ";
Memol->Text = Memol->Text + "x1="+"";
Memol->Text = Memol->Text + " " +
FloatToStrF(kx3[i], ffGeneral, 10, 10)+" *;
Memol->Lines->Add(™);
Memol->Text = Memol->Text + "x2="+"";
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Memol->Text = Memol->Text +
FloatToStrF(kx2[i], ffGeneral, 10, 10)+" ";

Memol->Lines->Add("™);

Memol->Text = Memol->Text + "x3="+"";

Memol->Text = Memol->Text + "
FloatToStrF(kx1[i], ffGeneral, 10, 10)+" ";

Memol->Lines->Add("™);

Memol->Text = Memol->Text +
FloatToStrF(kx1[i]+kx2[i]+kx3[i], ffGeneral, 8, 8);
Memol->Lines->Add(*"™);

// ——=—=—=—=—=—=—=—==—=—==—======

Mem01‘>TeXt = Mem01_>Text + "X1+X2+X3:u+| :

void Coef(double x1,double y1,double x2,double y2,double

x3,double y3,double x,double y,
double &kx1, double &kx2, double &kx3)
{
double a,b,c,s,sum,sumz;
s = double(0.5 *(double(fabs((double(x2 -
(double(y3 - y1)) - (double(x3 - x1)) * (double(y2 - yI))));
a = double(0.5 *(double(fabs((double(x2 -
(double(y - y1)) - (double(x - x1)) * (double(y2 - yI)))));
b = double(0.5 *(double(fabs((double(x -
(double(y3 - y1)) - (double(x3 - x1)) * (double(y - y1))))));
¢ = double(0.5 *(double(fabs((double(x2 -
(double(y3 - y)) - (double(x3 - x)) * (double(y2 - Y)))));
kx1 = a/s;
kx2 = bls;
kx3 = cfs;
sum=kx1+kx2;
sum2=sum+kx3;

x1))
x1))

x1))

X))

*

*

*

double** Obert(double alpha)
{
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double **MatrObert;
MatrObert = new double*[3];
for(inti=0;i<3;it+)
MatrObert[i] = new double[3];
for(inti=0;1<3;i++)
{
for(intj=0;j <3; j++)

MatrObert[i][j] = O;
}
MatrObert[i][i] = 1;

}
MatrObert[0][0] = cos(alpha);
MatrObert[0][1] = sin(alpha);
MatrObert[1][0] = -sin(alpha);
MatrObert[1][1] = cos(alpha);
return MatrObert;
}
double** MultipleMatrix(double** figura, double **matr,
int N1)
{
double **result;
result = new double*[N1];
for(inti=0; i < N1, i++)
result[i] = new double[3];
for(inti=0; i < N1, i++)
{
for(intj=0;j < 3; j++)

{
result[i][j] = 0;
for(int k = 0; k< 3; k++)

result[i][j] += figura[i][K] *
matr[K][j];
}
}
return result;
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double** MultipleMatrix2(double** figura, double **matr,
int N1=3)

{
double **result;
result = new double*[N1];
for(inti=0; i < N1; i++)
result[i] = new double[7];
for(inti=0; i< N1, i++)
{
for(intj=0;j<7;j++)
{
result[i][j] = 0;
for(int k = 0; k < 3; k++)
result[i][j] += figura[i][K] *
matr[K][j];
}
}
}
return result;
}
] mmmm
double **OberD(double Alfa,double al,double a2)
{

double **MatrPer;
MatrPer=new double *[3];
for (int i=0;i<3;i++)

{

MatrPer[i]=new double[3];
}

for (int i=0;i<3;i++)

{

for (int j=0;j<3;j++)

MatrPer[i][j]=0;
}
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}

MatrPer[2][2]-1;

MatrPer[0][0]=cos(Alfa);
MatrPer[1][1]=cos(Alfa);

MatrPer[0][1]=sin(Alfa);
MatrPer[1][0]=-sin(Alfa);
MatrPer[2][0]=(-al*cos(Alfa))+(a2*sin(Alfa))+al;
MatrPer[2][1]=(-al*sin(Alfa))-(a2*cos(Alfa))+a2;
return MatrPer;

void _ fastcall TForml::PointSelectModeClick(TObject
*Sender)

{

pointselectmode = !pointselectmode;

double **Gomo(double k,double al,double a2)
{
double **MatrPer;
MatrPer=new double *[3];
for (int i=0;i<3;i++)

{MatrPer[i]=new double[3];

%or (int i=0;i<3;i++)

¢ for (int j=0;j<3;j++)
MatrPer[i][j]=0;

}

MatrPer[2][2]=1;
MatrPer[0][0]=k;
MatrPer[1][1]=k;
MatrPer[2][0]=(1-k)*a1,;
MatrPer[2][1]=(1-k)*a2;
return MatrPer;
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}

void __fastcall TForm1::BitBtn1Click(TObject *Sender)

{ BitBtn1l->Enabled=false;

Button12->Visible=true;
Forml1->PageControll->ActivePage=TabSheet3;
StringGrid1->Cells[0][0]="Ne";
StringGrid1->Cells[1][0]="X1";
StringGrid1->Cells[2][0]="X2";
StringGrid1->Cells[3][0]="X3";
StringGrid1->Cells[4][0]="Cyma";
StringGrid2->Cells[0][0]="Ne";
StringGrid3->Cells[0][0]="Ne";

StringGrid2->Cells[1][0]="X1";

StringGrid2->Cells[2][0]="X2";
StringGrid2->Cells[3][0]="X3";
StringGrid2->Cells[4][0]="Cyma";
StringGrid3->Cells[1][0]="X1";
StringGrid3->Cells[2][0]="X2";
StringGrid3->Cells[3][0]="X3";

/1 StringGrid1->Cells[4][0]="Cyma";

e ——

double determinant(double **x,int n)

t
inti, j;
double det=0;
inte, f, g, h;
if(n==1)

return x[0][O];
elseif (n==2)

) return (x[O][O]*x[1][1])-(x[O[1]*x[1][0]);

elseif (n>=3)

{

double **c;
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¢ = new double *[n - 1];
for (i=0;i<n;i++)
c[i] = new double[n - 1];
for (j=0;j<n;jt++)
{
e=0;
for (g=1;g<n; g++)

f=0;
for(h=0;h<n;h++)
if (h!=}j)
{
clel[f] = x[g][h] f

}

++:

e++;

}
det += pow(-1, j

2)*x[0][j]*determinant(c,n-1);
}
return det;
}
return det;
}
double minor(int i2, int j2, double **x, int n)
{
double jj = 0;
double **kk;
kk = new double *[n];
for (inti=0;i<n;i++)
kK[i] = new double[n];
int i3=0,j3=0;
for (int i=0;i<n;i++)
{
for (int j=0;j<n;j++)
{
if(i'=i2 && j'=j2)
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{
Kk[i3][3]=x[iI0T;
J3++;
if (j3==n-1)
{
j3=0;i3++;
}
}

Yo}
ji = determinant(kk,n-1);
return jj;

}
void __ fastcall TForm1::Button4Click(TObject *Sender)
{
Forml->PageControll->ActivePage=TabSheet2;
ClearGraph(Image2);
Button5->Enabled=false;
Edit14->Color=clRed;
BitBtn1->Enabled=false;
Button4->Enabled=false;
/IDrawGraph(Image2);
/I Form1->ScrollBox2->Width/2;
/I Form1->ScrollBox2->Height/2;
double XcE,YcE,XcIm3,YcIm3;
XcE=Image2->Width/2;
YcE=Image2->Height/2;
KilksPointDet = 0;
for(inti=0;i<10; i++)

selectedpoints[i] = false;
}
ParamDet();
ParamModeli();
BuildiIm3(XcE,YcE);

void __ fastcall TForm1::Button5Click(TObject *Sender)
{ Button4->Enabled=false;
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BitBtn1->Enabled=true;

Forml->PageControll->ActivePage=TabSheetl;
//OGepHeHa QYyHKIIIS:
double Xg[300],Yg[300];
NullMas(Xg,300);
NullMas(Yg,300);
double XcE=Image2->Width/2;
double YcE=Image2->Height/2;

1

double** figura;
double** matrObert;
figura = new double*[KilksPointDet];
matrObert = new double*[KilksPointDet];
for(int i = 0; i < KilksPointDet; i++)
{

figura[i] = new double[3];

matrObert[i] = new double[3];

}
int kut=60;
double alpha2=0;
for(int i = 0; i < KilksPointDet; i++)

{
figura[i][0] = Xd[i];
figura[i][1] = Yd[i];
figura[i][2] = 1;

}

for(int i=0;i<kutpov;i++){
alpha2 = kut* M_PI / 180;
matrObert = OberD(alpha2,XcMod, YcMod);
figura = MultipleMatrix(figura, matrObert,
KilksPointDet);}
for(int i = 0; i < KilksPointDet; i++)
{
Xd[i] = figura[i][0];
Yd[i] = figura[i][1];
}
for(int j=0;j<KilksPointDet;j++)
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{
Xa[j]1=((Xd[j]-XcE)/(mxylm2*kx/1.2))+XcMod,;
Ya[j]=((Yd[j]- YcE)/(mxylm2*ky/1.2))+YcMod,;
}
for(int i = 0; i < KilksPointDet; i++)

{
figura[i][0] = Xg[il;
figura[i][1] = Yq[il;
figura[i][2] = 1;

}

for(int i=0;i<kutpov;i++){

alpha2 = -kut* M_P1 / 180;
matrObert = OberD(alpha2,XcMod, YcMod);
figura = MultipleMatrix(figura, matrObert,
KilksPointDet);}
for(int i = 0; i < KilksPointDet; i++)
{
Xd[i] = figura[i][0];
Yd[i] = figura[i][1];
}
for(int i = 0; i < KilksPointDet; i++)
{
Xg[i] = figura[i][0];
Yo[i] = figura[i][1];

}

[*if (vxod)

{kut=120;

}

else

{kut=60;

}

for(int i = 0; i < KilksPointDet; i++)

{
figura[i] = new double[3];
matrObert[i] = new double[3];

}
for(int i = 0; i < KilksPointDet; i++)
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figura[i][0] = Xd[i];
figura[i][1] = Yd[i];
figura[i][2] = 1;

}
double alpha2 = kut * M_PI/ 180; // B pagianax.
matrObert = OberD(alpha2,XcMod,YcMod);

figura = MultipleMatrix(figura, matrObert,
KilksPointDet);
for(int i = 0; i < KilksPointDet; i++)
{
Xd[i] = figura[i][0];
Yd[i] = figura[i][1];
}

for(int j=0;j<KilksPointDet;j++)

1

Xg[i1=((Xd[j]-XcE)/(mxylm2*kx/1.2))+XcMod,;
Yo[il=((Yd[j]-YcE)/(mxylm2*ky/1.2))+YcMod,;
}
// ————=—=—=—=—=—=—=—=—=—=—=—=—=—=—====
for(int i = 0; i < KilksPointDet; i++)
{

figura[i][0] = Xg[il;
figura[i][1] = Yg[il;
figura[i][2] = 1;

}
double alpha3 = -kut * M_P1/ 180;
matrObert = OberD(alpha3,XcMod,YcMod);

figura = MultipleMatrix(figura, matrObert,
KilksPointDet);
for(int i = 0; i < KilksPointDet; i++)
{
Xg[i] = figura[i][0];
Yg[i] = figura[i][1];
S
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DrawFigure(Xg,Yg,KilksPointDet,clWhite,cIBlue);
double Xg2[300], Yg2[300];
NullMas(Xg2,300);
NullMas(Yg2,300);
kx=((a/2)*mashx);
ky=(sqrt(3)/2 * a)*mashy;
double X1,X2,X3;
double Y1,Y2,Y3;
X1 = x0-a/2*mashx;
Y1 =y0;
X2 =x0;
Y2 = y0-(sqrt(3)/2 * a)*mashy;
X3 = x0+a/2*mashx;
Y3 =y0;
// double MatrOb[7][3];
double** MatrOb;
double** MatrOb2;
double** MatrOb3;
double** base;
MatrOb = new double*[7];
MatrOb2 = new double*[3];
MatrOb3 = new double*[3];
base = new double*[3];
// matrObert = new double*[KilksPointDet];
for(inti=0;i<7;i++)
{
MatrObli] = new double[3];
/I matrObert[i] = new double[3];
}
for(inti=0;i<3;i++)
{
base[i] = new double[3];
MatrOb2[i] = new double[7];
MatrOb3[i] = new double[7];
/I matrObert[i] = new double[3];

}
MatrOb [0][0]=1,;
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MatrOb[0][1]=0;
MatrOb[0][2]=0;
MatrOb[1][0]=0;
MatrOb[1][1]=1;
MatrOb[1][2]=0;
MatrOb[2][0]=0;
MatrOb[2][1]=0;
MatrOb[2][2]-1;
MatrOb[3][0]=double(1.0/2);
MatrOb[3][1]=double(1.0/2);
MatrOb[3][2]=0;
MatrOb[4][0]=double(1.0/2);
MatrOb[4][1]=0;
MatrOb[4][2]=double(1.0/2);
MatrOb[5][0]=0;
MatrOb[5][1]=double(1.0/2);
MatrOb[5][2]=double(1.0/2);
MatrOb[6][0]=double(1.0/3);
MatrOb[6][1]=double(1.0/3);
MatrOb[6][2]=double(1.0/3);
double test[3][7];
double kx1[5];
double kx2[5];
double kx3[5];
NullMas(kx1,5);
NullMas(kx2,5);
NullMas(kx3,5);
for(int i=0;i<7;i++)
{
for(intj=0;j<3;j++)
{ StringGrid1->Cells[0][i+1]=i+1;
StringGrid2->Cells[0][i+1]=i+1;
I StringGridl-
>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]);
StringGridl-
>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]);
/I StringGrid2->Cells[4][i+1]=FloatToStr(sumali]);

¥
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}
for(int i = 0; i < KilksPointDet; i++)

{
Coef(X1,Y1,X2,Y2,X3,Y3,Xg[il, Y[il,kx[i],kx2[i],kx3]i]):;
}

Memol->Text = "Koopaunartu: ";
Memol->Lines->Add("");
double base2[3][3];
for (int i=0;i<3;i++){
base[2][i]= kxL[i];
base[0][i]= kx3[i];
base[1][i]=kx2[i];
}

for (int i=0;i<3;i++)

{

for (int j=0;j<3;j++)

{

base2[i][j]=base[i][j];

/* base[0][0]=1;
base[0][1]=2;
base[0][2]=3;
base[1][0]=4;
base[1][1]=5;
base[1][2]=6;
base[2][0]=4;
base[2][1]=5;
base[2][2]=4; */
double res[3][7]; double res2[3][7];
double op;
/* op=determinant(base,3);
for(int i=0;i<3;i++)
{
for (int j=0;j<3;j++)

if((i+])%2==0)
{
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base2[i][j]J=minor(i,j,base,3); /[funnlk(Bee,n);
}

else

{
base2[i][j]=-(minor(i,j,base,3));
}

}
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)

{
base[i][j]=base2[i][j];
}

for(int i=0;i<3;i++)
for(int j=0;j<3:j++)

{
base2[i][j]=base[j][i];
}

for(int i=0;i<3;i++)
for(int j=0;j<3;j++)

{
base2[i][j]=base2[i][j]/op;
}

for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)

{
base[i][j]=base2[i][jl;
}

+
double suma[7];
for (int i=0;i<7;i++)
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{
for (int j=0;j<3;j++)

{
MatrOb2[j][i]=MatrObl[i][j];
1

for (int i=0;i<7;i++)

{

for (int j=0;j<3;j++)

{
test[j][i]=MatrOb2[j][i];
1}

[* for (int i=0;i<3;i++)

{

for (int j=0;j<7;j++)

{

=res[i][jl;

3
MatrOb3=MultipleMatrix2(base,MatrOb2,3);
for (int i=0;i<7;i++)

{

for (int j=0;j<3;j++)

{
MatrOb[i][j]=MatrOb3[j][i];

suma[0]=0;
suma[1]=0;
suma[2]=0;
suma[3]=0;
suma[4]=0;
suma[5]=0;
suma[6]=0;

for (int i=0;i<7;i++)
{
for (int j=0;j<3;j++)
{
sumali]+=MatrODb[i][j];
1}

[* for (int i=0;i<3;i++)
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for (int j=0;j<7;j++)

{
res2[i][j]=MatrOb3[i][j];
1}

* for (int i=0;i<7;i++)

{

for (int j=0;j<3;j++)

{
MatrObljl[i]=res[il[il;
3
for(int i=0;i<7;i++)
{
for(intj=0;j<3;j++)
{ StringGrid1->Cells[0][i+1]=i+1;
StringGrid2->Cells[0][i+1]=i+1,;
I StringGridl-
>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][i]);
StringGrid2-
>Cells[j+1][i+1]=FloatToStrF(MatrObli][j], ffGeneral, 8, 8);
StringGrid2->Cells[4][i+1]=FloatToStr(sumali]);
}
}
for(int i=0;i<3;i++)
{
for(intj=0;j<3;j++)
{ StringGrid3->Cells[0][i+1]=i+1;

StringGrid3->Cells[j+1][i+1]=FloatToStrF(base[j][i],
ffGeneral, 8, 8);
}

}
Memol->Lines->Add("");

for(int i = 0; i < KilksPointDet; i++)

{

Memol->Text = Memol->Text +  "3HaueHHs
koopaunatu" + FloatToStrF(i+1, ffGeneral, 6, 6)+" ";

Memol->Lines->Add(™");
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Memol->Text = Memol->Text + "x1="+"";
Memol->Text = Memol->Text +
FloatToStrF(kx3[i], ffGeneral, 8, 8)+" ";
Memol->Lines->Add("™);
Memol->Text = Memol->Text + "x2="+"";
Memol->Text = Memol->Text + "
FloatToStrF(kx2[i], ffGeneral, 8, 8)+" ";
Memol->Lines->Add(*"™);
Memol->Text = Memol->Text + "x3="+"";
Memol->Text = Memol->Text +
FloatToStrF(kx1[i], ffGeneral, 8, 8)+" ",
Memol->Lines->Add(*"™);

Memol->Text = Memol->Text + "X1+x2+x3="+"",

Memol->Text = Memol->Text + "
FloatToStrF(kx1[i]+kx2[i]+kx3[i], ffGeneral, 8, 8);
Memol->Lines->Add(*"™);
}
}
void __ fastcall TForm1::Edit1EXxit(TObject *Sender)
{
Buttonl->Enabled=false;
if("TryStrToFloat(Editl->Text,Lb1)){
/I ShowMessage("Error!!! *);
Edit7->Color=clRed;
L11=true;
L1=false;
Button3->Visible=true;
//Lb1= double(0.01);
/I Form1->Edit1->Text=Lb1;
}
else {
Lb1 =(double) StrToFloat(Forml1->Edit1->Text);
if (Lb1<=0 || Lb1>=1){
L11=false;
L1=false;
Edit7->Color=cIRed;
Button3->Visible=true;
L111=true;
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/I Lb1= double(0.01);
/I ShowMessage("Error!!! ");

/I Form1->Edit1l->Text=double(0.01);
}

else
{
L11=false;
L111=false;
L1=true;
Edit7->Color=clGreen;
/I Edit2->Enabled=true;
Button3->Visible=false;
if (Lb1>=Ubl)
{
Edit8->Color=clRed;
Ul=false;
Ull=false;
Edit8->Color=cIRed; Button6->Visible=true;
Ulll=false;
Ull1l1=true;
}
else {
Edit8->Color=clGreen;
Ull=false;
Ull1l=false;
Ul=true;
Edit8->Color=clGreen; Button6->Visible=false;
Ul111=false;
}
}

¥
if (L1 && L2 && L3 && Ul && U2 && U3){

Button1->Enabled=true;
}

else{
Buttonl->Enabled=false;

¥
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void __fastcall TForm1::Edit2Exit(TObject *Sender)
{ Buttonl->Enabled=false;
if("TryStrToFloat(Edit2->Text,Ub1)){
/I ShowMessage("Error!!! ™);
Edit8->Color=clIRed;
Ull=true;
//Lb1= double(0.01);
/I Form1->Editl->Text=Lb1;
Ul=false;
Ulllil=false;
Button6->Visible=true;
}
else {
Ubl1 =(double) StrToFloat(Form1->Edit2->Text);
if (Ubl<=0 || Ub1>=1){
Ull=false;
Edit8->Color=clRed; Button6->Visible=true;
Ulll=true;
Ul=false;
Ulllil=false;
}

else
{
Ull=false;
Ull1l=false;
Ul=true;
Ul111=false;
Edit8->Color=clGreen; Button6->Visible=false;
if (Lb1>=Ubl)
{
Edit8->Color=clRed;
Ul=false;
Ull=false;
Edit8->Color=clRed; Button6->Visible=true;
Ulll=false;
Ullll=true;

¥
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else {

Edit8->Color=clGreen;

Ull=false;

Ulll=false;

Ul=true;

Edit8->Color=clGreen; Button6->Visible=false;
Ul111=false;

¥
¥

if (L1 && L2 && L3 && Ul && U2 && U3){
Buttonl->Enabled=true;
}
else{
Buttonl->Enabled=false;

void __ fastcall TForm1::Button6Click(TObject *Sender)

{
if (U11)}{

}
else if (U111)
{

ShowMessage("Error!!! *);

}
else if (U1111){

ShowMessage("Error!!! €");

void __ fastcall TForm1::Edit3EXit(TObject *Sender)
{ Buttonl->Enabled=false;
if("TryStrToFloat(Edit3->Text,Lb2)){

Edit9->Color=cIRed;
L22=true;
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L2=false; Button7->Visible=true;
}
else {
Lb2 =(double) StrToFloat(Forml1->Edit3->Text);
if (Lb2<=0 || Lb2>=1){
L22=false;
Edit9->Color=cIRed; Button7->Visible=true;
L222=true;
L2=false;
}

else

{

L22=false;

L222=false;

L2=true;

Edit9->Color=clGreen;
Edit2->Enabled=true; Button7->Visible=false;

if(Lb2>=Ub2){

Edit10->Color=clRed; Button8->Visible=true;
U2=false;

U22=false;

Edit10->Color=clRed;

U222=false;

U2222=true;

}

else {

Edit10->Color=clGreen; Button8->Visible=false;
U22=false;

U222=false;

U2=true;

Edit10->Color=clGreen;

U2222=false;

¥
¥

hy
if (L1 && L2 && L3 && Ul && U2 && U3){

Buttonl->Enabled=true;

¥
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else{
Buttonl->Enabled=false;

void __fastcall TForm1::Button7Click(TObject *Sender)

{
if (L22){
ShowMessage("Error!!! ™);

}
else if (L222)
{

ShowMessage("Error!!! ™);

void __ fastcall TForm1::Button8Click(TObject *Sender)

{
if (U22){
ShowMessage("Error!!! *);

}
else if (U222)
{

ShowMessage("Error!!! *);

}
else if (U2222){

ShowMessage("Error!!! *);

void __ fastcall TForm1::Edit4EXxit(TObject *Sender)
{ Buttonl->Enabled=false;
if("TryStrToFloat(Edit4->Text,Ub2)){
/I ShowMessage("Error!!! *);
Edit10->Color=cIRed:;
u22=true;
//Lb1= double(0.01);
/I Form1->Editl->Text=Lb1;
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U2=false;
U2222=false; Button8->Visible=true;
}
else {
Ub2 =(double) StrToFloat(Forml1->Edit4->Text);
if (Ub2<=0 || Ub2>=1){
U22=false;
Edit10->Color=clIRed;
u222=true;
U2=false;
U2222=false; Button8->Visible=true;
}

else

{

U22=false;

U222=false;

U2=true;

Edit10->Color=clGreen; Button8->Visible=false;

if(Lb2>=Ub2){

Edit10->Color=clRed; Button8->Visible=true;
U2=false;

U22=false;

Edit10->Color=clRed;

U222=false;

U2222=true;
}
else {
Edit10->Color=clGreen; Button8->Visible=false;
U22=false;

U222=false;

U2=true;

Edit10->Color=clGreen;

U2222=false;

¥
¥

}
if (L1 && L2 && L3 && Ul && U2 && U3){
Buttonl->Enabled=true;
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}
else{
Buttonl->Enabled=false;

void __fastcall TForm1::Button10Click(TObject *Sender)

{
if (L33){
ShowMessage("Error!!!™);

}
else if (L333)

{

ShowMessage("Error!!™);

void __ fastcall TForm1::EError(TObject *Sender)

{
if (U33){
ShowMessage("Error!!! *);

}
else if (U333)
{

ShowMessage("Error!!!)");

}
else if (U3333){

ShowMessage("Error!!! ");

void __ fastcall TForm1::Edit5EXit(TObject *Sender)
{ Buttonl->Enabled=false;
if("TryStrToFloat(Edit5->Text,Lb3)){
Edit11->Color=clRed:;
L33=true;
L3=false; Button10->Visible=true;

¥
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else {
Lb3 =(double) StrToFloat(Form1->Edit5->Text);
if (Lb3<=0 || Lb3>=1){
L33=false;
Edit11->Color=cIRed; Button10->Visible=true;
L333=true;
L3=false;
}

else

{

L33=false;

L333=false;

L3=true;
Editl11->Color=clGreen;Button10->Visible=false;
Edit2->Enabled=true; if(Lb3>=Ub3){
Edit12->Color=clRed; Button9->Visible=true;
U3=false;

U33=false;

Edit12->Color=clRed;

U333=false;

U3333=true;

}

else {

Editl2->Color=clGreen; = Button9->Visible=false;
U33=false;

U333=false;

U3=true;

Edit12->Color=clGreen;

U3333=false;

¥
¥

hy
if (L1 && L2 && L3 && Ul && U2 && U3){

Button1->Enabled=true;
}

else{
Buttonl->Enabled=false;

¥
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void __fastcall TForml::Edit6Exit(TObject *Sender)

{ Buttonl->Enabled=false;
if("TryStrToFloat(Edit6->Text,Ub3)){

/l ShowMessage("Error!!! ™);

Edit12->Color=clRed;

U33=true;

//Lb1= double(0.01);

/I Form1->Editl->Text=Lb1;

U3=false; U3333=false; Button9->Visible=true;

}

else {
Ub3 =(double) StrToFloat(Forml1->Edit6->Text);
if (Ub3<=0 || Ub3>=1){
U33=false;
Edit12->Color=clRed; Button9->Visible=true;
U333=true;
U3=false; U3333=false;
}
else
{ U3333=false;
U33=false;
U333=false;
U3=true;
Edit12->Color=clGreen; Button9->Visible=false;
if(Lb3>=Ub3){
Edit12->Color=clRed; Button9->Visible=true;
U3=false;
U33=false;
Edit12->Color=clRed;
U333=false;
U3333=true;
}
else {
Editl2->Color=clGreen;  Button9->Visible=false;
U33=false;
U333=false;
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U3=true;
Edit12->Color=clGreen;
U3333=false;

¥
¥

¥
if (L1 && L2 && L3 && Ul && U2 && U3){

Buttonl->Enabled=true;

}

else{
Buttonl->Enabled=false;

void __fastcall TForm1::ErError2(TObject *Sender)
{
if(Errorl){
ShowMessage("Hemae Todok meperuny");
} else if (Error2){
ShowMessage("Todok mepeTnHy HE JOCTAaTHHO IS
mo6ynoBu migoomacti (1 abo 2 Toukn)");

void __ fastcall TForml::Edit6Change(TObject *Sender)

{
Button4->Enabled=false;

void __ fastcall TForm1::Edit5Change(TObject *Sender)

{
Button4->Enabled=false;

void __ fastcall TForm1::Edit4Change(TObject *Sender)

{
Button4->Enabled=false;

¥
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void __fastcall TForm1::Edit3Change(TObject *Sender)

{
Button4->Enabled=false;

void __fastcall TForml::Edit2Change(TObject *Sender)

{
Button4->Enabled=false;

void __fastcall TForml::Edit1Change(TObject *Sender)

{
Button4->Enabled=false;

void __ fastcall TForm1::Button12Click(TObject *Sender)

{
Form1->PageControll->ActivePage=TabSheet3;

void __ fastcall TForm1::Button15Click(TObject *Sender)
{ Button1Click(Forml); indexPoints=0;
Button4Click(Forml);  Button5->Enabled=false;
Edit14->Color=cIRed;

void _ fastcall TForm1::Button13Click(TObject *Sender)

{
Form1->PageControll->ActivePage=TabSheet1;
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ADDITION 2
PROGRAM LISTING
Basic procedures and functions for constructing an
experiment plan for a four-component mixture

procedure convert(a, b: vectorl; var x1, x2, X3, x4: vector);
var

i, j, g, n: Integer;
ki, k2: mas;
begin

k1[1, 1] := a[1];
k1[1, 2] = a[2];
k1[1, 3] = a[3];
K1[1, 4] =1 - (K1[1, 2] + K1[1, 1] + k1[1, 3]);
k1[2, 1] := b[1];
k1[2, 2] := a[2];
k1[2, 3] := a[3];
k1[2, 4] :=1 - (k1[2, 2] + k1[2, 1] + k1[2, 3]);
k1[3, 1] :=a[1];
k1[3, 2] := b[2];
k1[3, 3] := a[3];
k1[3, 4] :=1 - (k1[3, 2] + k1[3, 1] + K1[3, 3]);
k1[4, 1] := b[1];
k1[4, 2] :=b[2];
k1[4, 3] :=a[3];
k1[4, 4] :=1 - (k1][4, 2] + k1[4, 1] + k1[4, 3]);
k1[5, 1] := a[1];
k1[5, 2] := a[2];
k1[5, 3] :=b[3];
k1[5, 4] :=1 - (k1]5, 2] + k1[5, 1] + k1[5, 3]);
k1[6, 1] := b[1];
ki[e6, 2] := a[2];
k1[6, 3] := b[3];
k1[6, 4] :=1 - (k1[6, 2] + k1[6, 1] + k1[6, 3]);
ki[7, 1] := a[1];
k1[7, 2] :=b[2];
k1[7, 3] :=b[3];
k1[7, 4] :=1 - (K1[7, 2] + k1[7, 1] + k1[7, 3]);
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k1[8, 1] := b[1];
k1[8, 2] := b[2];
k1[8, 3] :=b[3];
k1[8, 4] :=1 - (k1[8, 2] + k1[8, 1] + k1][8, 3]);
k1[9, 1] := a[1];
k1[9, 2] := a[2];
k1[9, 4] := a[4];
k1[9, 3] :=1 - (k1]9, 2] + k1]9, 1] + k1][9, 4]);

k1[10,
k1[10,
k1[10,
k1[10,
k1[11,
K1[11,
K1[11,
K1[11,
k1[12,
k1[12,
k1[12,
k1[12,
k1[13,
k1[13,
k1[13,
k1[13,
k1[14,
k1[14,
k1[14,
k1[14,
K1[15,
K1[15,
K1[15,
K1[15,
K1[16,
K1[16,
K1[16,
K1[16,
K1[17,
k1[17,

1] = b[1];
2] :=2a[2];
4] = a[4];
3] :=1-(k1[10, 2] + k1]10, 1] + k1[10, 4]);
1] :=a[1];
2] :=b[2];
4] = a[4];
3]:=1- (k1[11, 2] + k1[11, 1] + k1[11, 4]);
1] =b[1];
2] :=b[2];
4] = a[4];
3]:=1-(k1[12, 2] + k1[12, 1] + K1[12, 4]);
1] :=a[1];
2] :=al2];
4] := b[4];
3] :=1-(K1[13, 2] + k1[13, 1] + K1[13, 4]);
1] =b[1];
2] :=al2];
4] := b[4];
3] :=1-(k1[14, 2] + k1[14, 1] + k1[14, 4]);
1] =a[1];
2] :=b[2];
4] := b[4];
3] :=1- (k1[15, 2] + k1[15, 1] + k1[15, 4]);
1] =b[1];
2] :=b[2];
4] := b[4];
3] :=1-(k1[16, 2] + k1[16, 1] + k1[16, 4]);
1] :=a[1];
3] :==2a[3];
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k1[17, 4] = a[4];
k1[17,2] :=1 - (k1[17, 4] + k1[17, 1] + k1[17, 3]);
k1[18, 1] := b[1];
k1[18, 3] := a[3];
k1[18, 4] := a[4];
k1[18, 2] := 1 - (k1[18, 4] + k1[18, 1] + k1[18, 3]);
k1[19, 1] := a[1];
k1[19, 3] := b[3];
k1[19, 4] := a[4];
k1[19, 2] := 1 - (k1[19, 4] + k1[19, 1] + k1[19, 3]);
k1[20, 1] := b[1];
k1[20, 3] := b[3];
k1[20, 4] := a[4];
k1[20, 2] := 1 - (k1[20, 4] + k1[20, 1] + k1[20, 3]);
k1[21, 1] = a[1];
ki[21, 3] :=a[3];
k1[21, 4] := b[4];
k1[21, 2] :=1 - (k1[21, 4] + k1[21, 1] + k1[21, 3]);
k1[22, 1] := b[1];
k1[22, 3] :=a[3];
k1[22, 4] := b[4];
k1[22, 2] :=1 - (k1]22, 4] + k1[22, 1] + k1][22, 3]);
k1[23, 1] :=a[1];
k1[23, 3] := b[3];
k1[23, 4] := b[4];
k1[23, 2] ;=1 - (k1][23, 4] + k1[23, 1] + k1][23, 3]);
k1[24, 1] := b[1];
k1[24, 3] := b[3];
k1[24, 4] := b[4];
k1[24, 2] := 1 - (k1][24, 4] + k1[24, 1] + k1[24, 3]);
k1[25, 2] := a[2];
k1[25, 3] :=a[3];
k1[25, 4] = a[4];
k1[25, 1] := 1 - (k1][25, 2] + k1[25, 4] + k1[25, 3]);
k1[26, 2] := b[2];
k1[26, 3] :=a[3];
k1[26, 4] = a[4];
k1[26, 1] := 1 - (k1[26, 2] + k1[26, 4] + k1][26, 3]);
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k1[27, 2] := a[2];
k1[27, 3] := b[3];
k1[27, 4] = a[4];
k1[27, 1] := 1 - (k1[27, 2] + k1[27, 4] + K1[27, 3]);
k1[28, 2] := b[2];
k1[28, 3] := b[3];
k1[28, 4] := a[4];
k1[28, 1] := 1 - (k1[28, 2] + k1[28, 4] + k1[28, 3]);
k1[29, 2] := a[2];
k1[29, 3] := a[3];
k1[29, 4] := b[4];
k1[29, 1] := 1 - (k1[29, 2] + k1[29, 4] + k1[29, 3]);
k1[30, 2] := b[2];
k1[30, 3] :=a[3];
k1[30, 4] := b[4];
k1[30, 1] := 1 - (k1[30, 2] + k1[30, 4] + k1[30, 3]);
k1[31, 2] :=a[2];
k1[31, 3] := b[3];
k1[31, 4] := b[4];
k1[31, 1] :=1 - (k1[31, 2] + k1[31, 4] + k1[31, 3]);
k1[32, 2] := b[2];
k1[32, 3] := b[3];
k1[32, 4] := b[4];
k1[32, 1] :=1 - (k1][32, 2] + k1[32, 4] + k1[32, 3]);
j=0;
fori:=1t032do
begin
if (kL[i, 1] >= a[1]) and (k1[i, 1] <= b[1]) and (K1[i, 2] >=
a[2]) and (k1[i, 2] <= b[2]) and (k1[i, 3] >= a[3]) and (k1[i, 3] <=
b[3]) and (k1[i, 4] >= a[4]) and (k1[i, 4] <= b[4]) then
begin
=i+l
k2[j, 1] := k1[i, 1];
k2[j, 2] := k1][i, 2];
k2[j, 3] := k1][i, 3];
k2[j, 4] := k1][i, 4];
end;
forn:=j+1to32do
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begin

k2[n, 1] :=0;
k2[n, 2] :=0;
k2[n, 3] :=0;
k2[n, 4] :=0;
end;
end;
forg:=1to32do
begin

x1[g] := k2[g, 1];
x2[g] := k2[g, 2];
x3[g] = k2[g, 3];
x4[g] := k2[g, 4];
end;
end;
procedure grani(x1, x2, x3, x4: vector; var ox1, ox2, ox3,
ox4: vector);
type
PMyList = “AList;
AList = record
R1: real;
R2: real;
R3: real;
R4: real;
end;
var
MyL.ist: TList;
ARecord: PMyL.ist;
i,i1,i2,1i3, ], k, prov_sovp, count: Integer;
sumx1, sumx2, sumx3, sumx4, serxl, serx2, serx3, serx4:
Real;
begin
MyL.ist := TList.create;
sumx1 :=0;
serxl :=0;
count :=0;
sumx2 :=0;
serx2 :=0;
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sumx3 :=0;

serx3 :=0;
sumx4 = 0;
serx4d = 0;
fori:=1to32do
begin
prov_sovp = 0;
if i <> 1then
begin
fork:=1toi-1do
begin

if (x1[i] = x1[K]) then
prov_sovp = 1;

end;
end;
if ((i = 1) or (prov_sovp = 0)) then
begin

if (x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and

(x4[i] <> 0)) then

begin
forj:=ito32do
begin
if (x1[i] = x1[j + 1]) then
begin

sumx1 := sumxl + x1[j + 1];
sumx2 := sumx2 + x2[j + 1];
sumx3 := sumx3 + x3[j + 1];
sumx4 := sumx4 + x4[j + 1];
count :=count + 1;
end;
end;
if (count <> 0) then
begin
sumx1 := sumx1 + x1[i];
sumx2 := sumx2 + x2[i];
sumx3 := sumx3 + x3[i];
sumx4 := sumx4 + x4[i];
serx1 := sumx1/ (count + 1);
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ox1[i] := serx1;

serx2 :=sumx2 / (count + 1);
ox2[i] := serx2;

serx3 :=sumx3 / (count + 1);
ox3[i] := serx3;

serx4 :=sumx4 / (count + 1);
ox4[i] := serx4;
New(ARecord);
ARecord™.R1 := ox1[i];
ARecord™.R2 := ox2[i];
ARecord™.R3 := ox3[i];
ARecord™.R4 := ox4[i];

MyL.ist. Add(ARecord);
end;
sumxl := 0;
serxl :=0;
count :=0;
sumx2 :=0;
serx2 :=0;
sumx3 :=0;
serx3 :=0;
sumx4 := 0;
serx4 :=0;
end;
end;
end;
foril:=1to 32 do
begin
prov_sovp = 0;
if il <> 1 then
begin
fork:=1toil-1do
begin

if (x2[i1] = x2[K]) then
prov_sovp = 1;
end;
end;
if ((i1 = 1) or (prov_sovp = 0)) then
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begin

if (x1[i1] <> 0) and (x2[i1] <> 0) and (x3[i1] <> 0) and
(x4[i1] <> 0)) then

begin
for j :=ilto32do
begin
if (x2[i1] = x2[j + 1]) then
begin

sumxl := sumx1 + x1[j + 1];
sumx2 ;= sumx2 + x2[j + 1];
sumx3 := sumx3 + x3[j + 1];
sumx4 = sumx4 + x4[j + 1];
count := count + 1;
end;
end;
if (count <> 0) then
begin
sumx1 := sumxl1 + x1[il];
sumx2 := sumx2 + x2[il];
sumx3 := sumx3 + x3[il];
sumx4 ;= sumx4 + x4[il];
serx1 :=sumx1 / (count + 1);
ox1[il] := serxl;
serx2 := sumx2 / (count + 1);
ox2[i1] := serx2;
serx3 := sumx3 / (count + 1);
ox3[i1] := serx3;
serx4 := sumx4 / (count + 1);
ox4[il] := serx4;
New(ARecord);
ARecord®.R1 := ox1[il];
ARecord®.R2 := ox2[il];
ARecord”.R3 := ox3Jil];
ARecord”.R4 := ox4[il];

MyL.ist. Add(ARecord);
end,;
sumxl1 :=0;
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serxl :=0;
count := 0;
sumx2 := 0;
serx2 :=0;
sumx3 = 0;
serx3 = 0;
sumx4 = 0;
serx4 :=0;
end;
end;
end;
fori2:=1to32do
begin
prov_sovp = 0;
if i2 <> 1 then
begin
fork:=1toi2-1do
begin
if (x3[i2] = x3[K]) then
prov_sovp = 1;
end;
end;
if ((i2 = 1) or (prov_sovp = 0)) then
begin
if (x1[i2] <> 0) and (x2[i2] <> 0) and (x3[i2] <> 0) and
(x4[i2] <> 0)) then

begin
forj:=i2to32do
begin
if (x3[i2] = x3[j + 1]) then
begin

sumxl :=sumx1 + x1[j + 1];
sumx2 = sumx2 + x2[j + 1];
sumx3 ;= sumx3 + x3[j + 1];
sumx4 = sumx4 + x4[j + 1];
count := count + 1;
end;
end;
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if (count <> 0) then

begin
sumx1 := sumx1 + x1[i2];
sumx2 = sumx2 + x2[i2];
sumx3 := sumx3 + x3[i2];
sumx4 := sumx4 + x4[i2];
serx1 := sumx1 / (count + 1);
ox1[i2] := serxl;
serx2 :=sumx2 / (count + 1);
ox2[i2] := serx2;
serx3 := sumx3 / (count + 1);
ox3[i2] := serx3;
serx4 := sumx4 / (count + 1);
0x4[i2] := serx4;
New(ARecord);
ARecord™.R1 := ox1[i2];
ARecord®.R2 := ox2[i2];
ARecord”.R3 := ox3Ji2];
ARecord®.R4 := ox4]i2];

MyL.ist. Add(ARecord);
end;
sumxl := 0;
serxl :=0;
count :=0;
sumx2 := 0;
serx2 :=0;
sumx3 :=0;
serx3 :=0;
sumx4 = 0;
serx4 :=0;
end;
end;
end;
fori3 :=1to 32 do
begin
prov_sovp = 0;
if i3 <> 1 then
begin
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fork:=1toi3-1do
begin
if (x4[i3] = x4[K]) then
prov_sovp =1,

end;
end;
if ((i3 =1) or (prov_sovp = 0)) then
begin

if (x1[i3] <> 0) and (x2[i3] <> 0) and (x3[i3] <> 0) and

(x4[i3] <> 0)) then

begin
for j := i3 to 32 do
begin
if (x4[i3] = x4[j + 1]) then
begin

sumxl := sumx1 + x1[j + 1];
sumx2 := sumx2 + x2[j + 1];
sumx3 := sumx3 + x3[j + 1];
sumx4 := sumx4 + x4[j + 1];
count := count + 1;
end,;
end;
if (count <> 0) then
begin
sumx1 := sumx1 + x1[i3];
sumx2 := sumx2 + x2[i3];
sumx3 := sumx3 + x3[i3];
sumx4 := sumx4 + x4[i3];
serx1 := sumx1/ (count + 1);
ox1[i3] := serxl;
serx2 := sumx2 / (count + 1);
ox2[i3] := serx2;
serx3 := sumx3 / (count + 1);
ox3[i3] := serx3;
serx4 := sumx4 / (count + 1);
ox4[i3] := serx4;
New(ARecord);
ARecord®.R1 := ox1[i3];
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ARecord™.R2 := ox2[i3];
ARecord”.R3 := 0x3Ji3];
ARecord™.R4 := ox4[i3];
MyL.ist. Add(ARecord);
end;
sumxl :=0;
serxl :=0;
count :=0;
sumx2 := 0;
serx2 :=0;
sumx3 :=0;
serx3 :=0;
sumx4 = 0;
serx4 = 0;
end;
end;
end;
for j := 0 to (MyList.Count - 1) do
begin
ARecord := MyL.ist.Items[j];
ox1[j+1]:= ARecord™.R1,
ox2[j+1]:= ARecord".R2;
ox3[j+1]:= ARecord".R3;
ox4[j+1]:= ARecord".R4;
end;
end;
procedure rebra(xl, x2, X3, x4: vector; var dx1, dx2, dx3,
dx4: vector);
type
PMyList = “AList;
AList = record
R1: real;
R2: real;
R3: real;
R4: real;
end;
var
MyList: TList;
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ARecord: PMyL.ist;
i,1i1,i2,1i3, j, count: Integer;
sumxl1, sumx2, sumx3, sumx4, serxl, serx2, serx3, serx4:

Real;
begin

MyList := TList.create;
sumxl := 0;
serxl :=0;
count :=0;
sumx2 = 0;
serx2 :=0;
sumx3 = 0;
serx3 :=0;
sumx4 = 0;
serx4 :=0;
fori:=1to32do
begin

if (x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and
(x4[i] <> 0)) then
begin
forj:=ito32do
begin

if (x1[i] = x1[j + 1])then begin
if (x2[i]=x2[j+1]) then

begin

sumx1 := sumxl + x1[j + 1];
sumx2 := sumx2 + x2[j + 1];
sumx3 := sumx3 + x3[j + 1];
sumx4 := sumx4 + x4[j + 1];
count :=count + 1;

end;

if (x3[i]=x3[j+1]) then

begin

sumxl :=sumx1 + x1[j + 1];
sumx2 ;= sumx2 + x2[j + 1];
sumx3 := sumx3 + x3[j + 1];
sumx4 = sumx4 + x4[j + 1];
count := count + 1;
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end;
if (x4[i]=x4[j+1]) then
begin
sumxl := sumx1 + x1[j + 1];
sumx2 ;= sumx2 + x2[j + 1J;
sumx3 := sumx3 + x3[j + 1];
sumx4 ;= sumx4 + x4[j + 1];
count := count + 1;
end;
end;
if (count <> 0) then
begin
sumxl := sumx1 + x1[i];
sumx2 := sumx2 + x2[i];
sumx3 := sumx3 + x3[i];
sumx4 := sumx4 + x4[i];
serx1 :=sumx1 / (count + 1);
dx1[i] := serx1,;
serx2 := sumx2 / (count + 1);
dx2[i] := serx2;
serx3 := sumx3 / (count + 1);
dx3[i] := serx3;
serx4 := sumx4 / (count + 1);
dx4[i] := serx4;
New(ARecord);
ARecord®.R1 := dx1Ji];
ARecord®.R2 := dx2[i];
ARecord”.R3 := dx3Ji];
ARecord®.R4 := dx4Ji];

MyL.ist. Add(ARecord);

end;

sumxl1 :=0;

serxl :=0;

count :=0;

sumx2 :=0;

serx2 :=0;

sumx3 := 0;

serx3 :=0;

245



sumx4 = 0;

serx4 :=0;
end;
end;
end;
foril:=1to32do
begin

if (x1[i1] <> 0) and (x2[i1] <> 0) and (x3[i1] <> 0) and
(x4[i1] <> 0)) then

begin
for j :=ilto32do
begin
if (x2[i1] = x2[j + 1]) then
begin
if (x3[i1]=x3[j+1])then
begin

sumx1 := sumxl + x1[j + 1];
sumx2 := sumx2 + x2[j + 1];
sumx3 := sumx3 + x3[j + 1];
sumx4 := sumx4 + x4[j + 1];
count := count + 1;
end;
if (x4[i1]=x4[j+1]then
begin
sumx1 := sumxl + x1[j + 1];
sumx2 := sumx2 + x2[j + 1];
sumx3 := sumx3 + x3[j + 1];
sumx4 := sumx4 + x4[j + 1];
count :=count + 1;
end;
end;
if (count <> 0) then
begin
sumx1 := sumx1 + x1[il];
sumx2 := sumx2 + x2[i1];
sumx3 := sumx3 + x3[i1];
sumx4 := sumx4 + x4[il];
serx1 := sumx1/ (count + 1);
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dx1[il] := serx1,;

serx2 := sumx2 / (count + 1),
dx2[il] := serx2;

serx3 := sumx3 / (count + 1);
dx3[il] := serx3;

serx4 := sumx4 / (count + 1);
dx4[il] := serx4;
New(ARecord);
ARecord™.R1 := dx1[il];
ARecord™.R2 := dx2[i1];
ARecord™.R3 := dx3[i1];
ARecord™.R4 := dx4[i1];

MyL.ist. Add(ARecord);
end;
sumxl := 0;
serxl :=0;
count :=0;
sumx2 :=0;
serx2 :=0;
sumx3 :=0;
serx3 :=0;
sumx4 = 0;
serx4 :=0;
end;
end;

end;

fori2 :=1to 32 do

begin

if (x1[i2] <> 0) and (x2[i2] <> 0) and (x3[i2] <> 0) and
(x4[i2] <> 0)) then

begin
forj:=i2to32do
begin
if (x3[i2] = x3[j + 1]) then
begin
if (x4[i2]=x4[j+1]) then
begin

sumx1:= sumx1 + x1[j + 1];
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sumx2:= sumx2 + x2[j + 1];
sumx3:= sumx3 + x3[j + 1];
sumx4:= sumx4 + x4[j + 1];
count:= count + 1;
end;
end;
if (count <> 0) then
begin
sumxl := sumx1 + x1[i2];
sumx2 := sumx2 + x2[i2];
sumx3 := sumx3 + x3[i2];
sumx4 := sumx4 + x4[i2];
serx1 := sumx1 / (count + 1);
dx1[i2] := serxl;
serx2 :=sumx2 / (count + 1);
dx2[i2] := serx2;
serx3 := sumx3 / (count + 1);
dx3[i2] := serx3;
serx4 := sumx4 / (count + 1);
dx4[i2] := serx4;
New(ARecord);
ARecord®.R1 := dx1]i2];
ARecord®.R2 := dx2[i2];
ARecord”.R3 := dx3Ji2];
ARecord®.R4 := dx4[i2];

MyL.ist. Add(ARecord);

end;

sumx1 :=0;
serxl :=0;
count :=0;
sumx2 :=0;
serx2 :=0;
sumx3 :=0;
serx3 :=0;
sumx4 = 0;
serx4 :=0;

end;
end;
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end,;
for j := 0 to (MyList.Count - 1) do
begin
ARecord := MyList.Items[j];
dx1[j+1]:= ARecord™.R1;
dx2[j+1]:= ARecord™.R2;
dx3[j+1]:= ARecord™.R3;
dx4[j+1]:= ARecord™.R4;
end;
end;
procedure centr(x1, x2, x3, x4: vector; var cx1, cx2, cx3,
cx4:real);
var
i:Integer;
count,suml,sum2,sum3,sumé4:Real;
begin
count:=0; sum1:=0; sum2:=0; sum3:=0; sum4:=0;
for i:=1 to 32 do begin
if (x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i]
<> 0)) then
begin
count:=count+1;
suml:=suml+x1[i];
sum2:=sum2+x2[i];
sum3:=sum3+x3[i];
sumé4:=sum4+x4[i];
end;
if count <> 0 then
begin
cx1:=suml/count;
Cx2:=sum2/count;
cx3:=sum3/count;
cx4:=sum4/count;
end;
end;
end;
procedure vids_centr (x1,x2,x3,x4:vector;
cx1,cx2,cx3,cx4:Real; a,b:vectorl; var dc:vector);
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var i,n:Integer;
begin
for i:=1to 32 do
begin
if (x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i]
<> 0)) then
begin
dc[i]:=Sart(Sqr((x1[i]-cx1)/(b[1]-a[1]))+Sar((x2[i]-
cx2)/(b[2]-a[2]))+Sar((x3[i]-cx3)/(b[3]-a[3]))+Sar((x4[i]-cx4)/(b[4]-
a[4]));
end;
for n:=i+1 to 32 do begin
dc[n]:=0;
end;
end;
end;
procedure convert2 (x1, X2, x3, x4, dcv, dx1, dx2, dx3, dx4,
der, ox1, ox2, 0x3, ox4, dcg:vector; var tx1, tx2, tx3, tx4, dc:vector);
type
PMyList = “AList;
AList = record
R1:real; R2:real; RS3:real; R4: real; R5: Real;
end;
var i j:integer;
MyL.ist: TList;
ARecord: PMyL.ist;
begin
MyL.ist := TList.create;
for i:=1to 32 do
begin
if (x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i]
<> 0) and (dcv[i]<>0)) then
begin
New(ARecord);
ARecord™.R1 := x1[i];
ARecord®.R2 := x2[i];
ARecord”.R3 := x3[i];
ARecord™.R4 := x4[i];
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ARecord™.R5 := devli];
MyList. Add(ARecord);
end,;
if ((dx1[i] <> 0) and (dx2[i] <> 0) and (dx3[i] <> 0) and
(dx4[i] <> 0)and (dcr[i]<>0)) then
begin
New(ARecord);
ARecord™.R1 := dx1[i];
ARecord™.R2 := dx2[i];
ARecord®.R3 := dx3Ji];
ARecord™.R4 := dx4[i];
ARecord”.R5 := dcrf[i];
MyL.ist. Add(ARecord);
end;
if ((ox1[i] <> 0) and (ox2[i] <> 0) and (ox3[i] <> 0) and
(ox4[i] <> 0)and (dcr[i]<>0)) then
begin
New(ARecord);
ARecord®.R1 := ox1]i];
ARecord®.R2 := ox2[i];
ARecord”®.R3 := ox3Ji];
ARecord®.R4 := ox4Ji];
ARecord”.R5 := dcg[i];

MyL.ist. Add(ARecord);
end;
end;
for j := 0 to (MyList.Count-1) do
begin

ARecord ;= MyL.ist.Items[j];
tx1[j+1]:= ARecord*.R1;
tx2[j+1]:= ARecord".R2;
tx3[j+1]:= ARecord".R3;
tx4[j+1]:= ARecord".R4;
dc[j+1]:= ARecord".R5;
end;
end;
procedure norm (dc:vector; var dn:real);
var i,count:Integer;
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sum,dnl,dn2:Real;
begin
count:=0;
for i:=1to 32 do
begin
if (dc[i]<>0) then
begin
count:=count+1;
sum:=sum+dc[i];
end;
end;
dnl:=sum/count;
dn2:=sqrt(2*dnl);
dn:=(dnl1+dn2)/2;
end;
procedure max_d (x1,x2,x3,x4,dc:vector; var max:integer);
var i:integer;
begin
for i:=1to 32 do
begin
if (x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and
(x4[i] <> 0) and (dc[i]<>0)) then
begin
if dc[i] > dc[max] then
max := i;
end;
end;
end;
procedure vibir_tochok (tx1,tx2,tx3,tx4,dc:vector; dn:Real;
var px1,px2,px3,px4:vector);
type
PMyList = “AList;
AList = record
R1:real; R2:real; R3:real; R4:real;
end;
var k1,i1,k,j,i,max:Integer;
dcl,dc2:vector;
dcc,dcl1,dc22,sx1,5x2,5%3,5x4:Real;
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MyL.ist: TList;
ARecord: PMyL.ist;
begin
MyList := TList.create;
j=1;
max_d(tx1,tx2,tx3,tx4,dc,max);
px1[j]:=tx1[max]; px2[j]:=tx2[max]; px3[j]:=tx3[max];
px4[j]:=tx4[max];
tx1[max]:=0; tx2[max]:=0; tx3[max]:=0; tx4[max]:=0;
dc[max]:=0;
max_d(tx1,tx2,tx3,tx4,dc,max);
px1[j+1]:=tx1[max]; px2[j+1]:=tx2[max];
px3[j+1]:=tx3[max]; px4[j+1]:=tx4[max];
tx1[max]:=0; tx2[max]:=0; tx3[max]:=0; tx4[max]:=0;
dc[max]:=0;
for i:=1 to 32 do begin
if ((tx1[i] <> 0) and (tx2[i] <> 0) and (tx3[i] <> 0) and
(tx4[i] <> 0) and (dc[i]<>0)) then
begin
vids_centr
(tx1,tx2,tx3,tx4,px1[1],px2[1],px3[1],px4[1],a,b,dcl);
vids_centr
(tx1,tx2,tx3,tx4,px1[2],px2[2],pXx3[2],px4[2],a,b,dc2);
end;
end;
for k1:=31 downto 1 do
for k :=1tokl do
begin
if (dc[K]<dc[k+1]) then
begin
sxl:=tx1[k+1]; sx2:=tx2[k+1]; sx3:=tx3[k+1];
sxd:=tx4[k+1]; dc1l:=dcl[k+1]; dc22:=dc2[k+1]; dcc:=dc[k+1];
tx1[k+1]:=tx1[K]; tx2[k+1]:=tx2[K]; tx3[k+1]:=tx3[K];
tx4[k+1]:= tx4[K]; dcl[k+1]:=dc1[K]; dc2[k+1]:=dc2[K];
dec[k+1]:=dc[K];
tx1[K]:=sx1; tx2[K]:=sx2; tx3[Kk]:=sx3; tx4[k]:=sx4;
dc1[k]:=dc11; dc2[k]:=dc22; dc[K]:=dcc;
end;
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end,;
for i1:=1 to 32 do begin
if ((dc1[i1]>1.0019) and (dc2[i1]>1.0019)) then begin
New(ARecord);
ARecord™.R1 := tx1[il];
ARecord™.R2 := tx2[il];
ARecord™.R3 := tx3[il];
ARecord™.R4 = tx4[il];
MyL.ist. Add(ARecord);
end;
end;
for j := 0 to (MyList.Count-1) do
begin
ARecord := MyList.ltems[j];
px1[j+3]:= ARecord™.R1;
px2[j+3]:= ARecord".R2;
px3[j+3]:= ARecord*.R3;
px4[j+3]:= ARecord*.R4;
end;
forj:=4to 14 do
begin
px1[j]:= px1[j];
pX2[j]:=px2[j];
px3[j]:=px3[];
px4[i]:=px4[];
end;
forj:=15t0 32 do
begin
px1[j]:=0;
px2[j]:=0;
px3[j]:=0;
px4[j]:=0;
end;
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
a[1] := StrToFloat(Editl.Text);
a[2] := StrToFloat(Edit3.Text);
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a[3] := StrToFloat(Edit5.Text);
a[4] := StrToFloat(Edit7.Text);
b[1] := StrToFloat(Edit2.Text);
b[2] := StrToFloat(Edit4.Text);
b[3] := StrToFloat(Edit6.Text);
b[4] := StrToFloat(Edit8.Text);
convert(a, b, x1, x2, x3, x4);
grANI(x1, x2, x3, x4, ox1, ox2, 0x3, ox4);
rebra(x1, x2, x3, x4, dx1, dx2, dx3, dx4);
centr(x1, x2, x3, x4, cx1, cx2, cx3, cx4);
vids_centr(x1,x2,x3,x4,cx1,cx2,cx3,cx4,a,b,dcv);
vids_centr(dx1,dx2,dx3,dx4,cx1,cx2,cx3,cx4,a,b,dcr);
vids_centr(ox1,0x2,0x3,0x4,cx1,cx2,cx3,cx4,a,b,dcg);
convert2(x1,x2,x3,x4,dcv,dx1,dx2,dx3,dx4,dcr,0x1,0x2,0x3,
ox4,dcg,tx1,tx2,tx3,tx4,dc);
norm (dc,dn);
vibir_tochok (tx1,tx2,tx3,tx4,dc,dn,px1,px2,px3,px4);
end;
procedure TForml1.Button2Click(Sender: TObject);
var j:Integer;
begin
form2.Show;
for j:=0 to 31 do begin
form2.StringGrid1.Cells[0, j] := floattostr(px1[j+1]);
form2.StringGrid1.Cells[1, j] := floattostr(px2[j+1]);
form2.StringGridl.Cells[2, j] := floattostr(px3[j+1]);
form2.StringGrid1.Cells[3, j] := floattostr(px4[j+1]);
end;
Form2.edtl.Text:=FloatToStr(cx1);
Form2.edt2. Text:=FloatToStr(cx2);
Form2.edt3.Text:=FloatToStr(cx3);
Form2.edt4. Text:=FloatToStr(cx4);
end;
end.
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