

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

KYIV NATIONAL UNIVERSITY OF TECHNOLOGIES AND
DESIGN

Rezanova V.G., Rezanova N.M.

OPTIMIZATION OF THE

COMPOSITION

OF MULTI-COMPONENT SYSTEMS:

RESEARCH AND SOFTWARE

Recommended by the Academic Council of the Kyiv National University of

Technologies and Design (Protocol № 2 of April, 30, 2025)

Kyiv -2025

 2

UDK 004.42:[544+001.894]

Recommended by the Academic Council of the Kyiv National University of
Technologies and Design for a wide range of researchers, teachers and engineers
(Protocol № 2 of April, 30, 2025)

Authors:

REZANOVA V. G. – Candidate of Technical Sciences, Associate Professor of the Department

of Computer Science, Kyiv National University of Technologies and Design;

REZANOVA N. М. – Laureate of the State Prize of Ukraine in the field of science and

technology, Candidate of Technical Sciences

Reviewers:

OPANASENKO V, M. - Laureate of the State Prize of Ukraine in the field of science and

technology, Doctor of Technical Sciences, Professor, Leading Research Fellow of the Institute

of Cybernetics of the National Academy of Sciences of Ukraine;

CHUPRYNKA V. I. - Doctor of Technical Sciences, Professor of the Department of Computer

Science, Kyiv National University of Technologies and Design

 Rezanova V.G., Rezanova N.M. Optimization of the composition of multi-
component systems: research and software. Monograph. – К.: АrtЕk, 2025. – 258 p.

ISBN 978-617-8543-18-1

 The monograph presents methods for mathematical planning of experimental studies and optimization

of the composition of multicomponent mixture systems. The results on the development of new synthetic

fibrous materials by introducing nanofillers of different chemical nature and form into their structure are

summarized. The software created by the authors for constructing an experimental plan in the studied area of

the factor space and optimizing the composition of any types of mixture systems of three- and four-

component heterogeneous compositions is considered in detail. Specific examples of the use of the software

for establishing the composition-property relationship in order to obtain fibrous materials with predicted

characteristics from nanofilled polymer mixtures are presented.

The monograph can be useful for teachers, scientists, postgraduates, students in the following

specialties: computer science, chemical technology as well as for a wide range of specialists working on

research and creation of new composite materials.

ISBN 978-617-8543-18-1 UDK 004.42:[544+001.894]
 © V.G. Rezanova, 2025

 © KNUTD

 © АrtЕk, 2025

 3

INTRODUCTION

The rapid development of science and technology in the

world, the constantly growing needs of mankind for goods with

improved properties, as well as limited natural resources have

led to the search for methods for obtaining new substances and

materials with a given set of indicators. In Ukraine, in 2017-

2021, under the target scientific research program of the NAS of

Ukraine “New functional substances and materials of chemical

production”, modern scientific approaches were developed to

create non-traditional materials with improved functional

characteristics for various areas of practical application and to

establish ways to control such properties [1]. Within the

framework of the program, fundamental principles for obtaining

substances and materials of a wide range of purposes based on

new energy-saving environmentally friendly technologies for the

needs of various industries and the social sphere have been

developed: energy saving, micro- and nanoelectronics, transport,

aircraft construction, agro-industrial complex, light and food

industry, household chemicals, environmental protection, etc.

Today, the improvement of the standard of living of

society and its sustainable development is largely achieved

thanks to scientific progress in chemical materials science, in

particular in the creation of fundamentally new polymer

composite materials. At the beginning of the 3rd millennium,

composites have gained importance in a wide variety of areas

of human activity, revolutionizing technology, everyday life

and lifestyle. Their practical value is due to the nonlinearity

and synergy of properties that provide an advantage over other

 4

materials, namely: high thermal and corrosion resistance, low

weight in combination with improved mechanical performance

and low cost. Their areas of application have expanded from

household goods (fabrics, textiles, knitwear, packaging,

biomedical products) to high-tech products (for aerospace and

military equipment, microelectronics, energy complex,

metallurgy, construction, healthcare, a new generation of

adsorbents for environmental protection). The possibilities of

giving polymer products the desired characteristics are

virtually unlimited thanks to a wide range of methods for their

modification.

One of the most effective is the introduction of various

additives into composites, especially substances in the

nanoscale. Natural or specially synthesized substances of

different sizes, geometric structure and chemical nature are

used as nanoadditives, which are selected taking into account

the achievement of the desired characteristics of composites,

their cost, the possibility of recycling, the impact on

biodegradability, etc. A significant number of requirements for

nanofillers are satisfied by natural layered aluminosilicates,

silicas, carbon derivatives (nanofibers, nanotubes, fullerenes),

metal nanoparticles (NPs), their oxides, etc. Their use allows

you to regulate the characteristics of polymeric materials and

give them a set of desired properties. Nanocomposites

containing additives of natural or modified clay demonstrate a

sharp improvement in strength and modulus of elasticity, heat

and fire resistance, and gas permeability [2-4]. The

introduction of carbon nanotubes (CNTs) expands the range of

applications in a wide variety of areas: as reinforced and anti-

 5

corrosion materials, solar cells, chemical sensors, adsorbents,

products for shielding from electromagnetic and microwave

radiation, etc. [5-8]. Due to the unique graphitic structure and

extraordinary biological properties, CNTs are of increasing

interest in biomedicine (drug delivery, bioimaging, biosensor

materials and tissue engineering) [7]. Synthetic fibers and

threads containing noble metal or metal oxide nanoparticles in

their structure acquire antimicrobial, anti-allergic, sorption and

antistatic properties and protect against UV radiation [9-12].

The simultaneous use of two different or bicomponent

nanoadditives is more effective. Polyvinyl alcohol nanofibers

containing Ag/TiO2 nanoparticles exhibit antimicrobial and

photocatalytic activity [13]. Polypropylene monofilaments with

Ag/SiO2 nanoadditives have, along with bactericidal properties,

high mechanical and manipulation characteristics [14].

Modification of polymers with nanoadditives also allows

solving environmental and social problems [15-17].

Composites for water purification [15], new environmentally

friendly adsorbents for environmental restoration [16,17], and

materials for biomedical purposes [18] have been created based

on biopolymers. The development and implementation of new,

so-called “green” technologies allows recycling and using

secondary polymers [19-21].

In nanofilled composites of incompatible polymers, in

addition to the concentration and chemical nature of additives,

an important factor is their uneven distribution in the volumes

of component phases, which significantly expands the

possibilities of regulating heterogeneous morphology and

makes mixed systems even more attractive. Under the

 6

condition of selective localization of highly dispersed

electrically conductive nanomodifiers in the interphase layer,

the content of the additive necessary to reduce the percolation

threshold is significantly reduced [22,23]. At the same time, the

formation of a percolation mesh structure by carbon nanotubes

in the polymer matrix also contributes to a significant increase

in the elastic modulus. The addition of organoclay to the

polyamide/polylactide (PA/PL) mixture caused a change in the

type of PA structure in the matrix - from droplet-matrix to

interwoven, as a result, the heat resistance and plasticity of the

composite material increased without a negative impact on its

stiffness and strength [24]. The preferential localization of

aluminum and titanium oxide nanoparticles at the phase

interface in the polypropylene/copolyamide (PP/SPA) and

polyethylene terephthalate (PET)/PP mixtures, respectively,

resulted in an improvement in the performance characteristics

of composite yarns – an increase in their strength and

dimensional stability due to a decrease in the diameters of in

situ formed PP and PET microfibrils [25,26]. The effectiveness

of nanoadditives in polymer mixtures increases with the

introduction of substances that affect interfacial phenomena

[27-29]. The addition of compatibilizers in the PP/SPA/CNT

and PET/PP/TiO2 mixtures contributed to the improvement of

their matrix-fibrillar structure – the average diameter of PP and

PET fibrils decreased, and the uniformity of their distribution

increased [27,28]. A significant increase in the tensile strength

of biodegradable composites was achieved due to interfacial

adhesion and the formation of a percolation network in the

 7

matrix with the simultaneous use of organomodified

montmorillonite and multilayer CNTs [29].

 Today, the number of created varieties of polymer

composites exceeds the number of existing steels. At the same

time, such materials are characterized by a longer service life

of products, as well as a better price-quality ratio. The tendency

to create new composites is constantly growing, despite the

limited amount of natural raw materials, since only ~ 10% of

petroleum products are spent on the production of all chemicals

from oil, including monomers.

In chemical technology, the main criterion for testing

theoretical hypotheses remains the results of experiments,

which are laborious and long-term. Thus, the development of

new nanocomposites requires research aimed at establishing

physicochemical factors that determine the compatibility and

segregation of components, the formation of a

microheterogeneous structure and the relationship with the

operational characteristics of products based on them. An

important task is to minimize the transition time from

laboratory experiments to industrial samples. An effective

means of increasing the efficiency of scientific research in

solving problems of calculation, analysis, optimization and

prediction of chemical and technological processes is the

method of mathematical modeling of the experiment. The

mathematical model is a response function that connects the

optimization parameter characterizing the results of the

experiment with the parameters that vary during the

experiments. Response surfaces in multicomponent systems are

complex and can be adequately described only by polynomials

 8

of high degrees, which requires a significant number of

experiments, since it is known that in a polynomial of degree n,

coefficients are added from the number of components q. To

accelerate research and increase the reliability of the results, we

have developed computer programs that allow us to build plans

for conducting experiments in the studied area of the factor

space for any types of mixture systems and all possible

combinations of ingredients in three- and four-component

heterogeneous compositions [30-33]. With the help of the

created programs, plans are built in an automated mode using

three types of models of dependence of the output parameters

on the content of components - incomplete cubic, cubic and

quadratic, which establish the relationship between the content

of ingredients and the properties of the system. Calculation of

the coordinates of the points of the experimental plan is also

carried out using software. To optimize the composition of the

composition, software has been developed using the

generalizing function of the Harrington criterion and using the

penalty function method with the subsequent application of

gradient descent with step fragmentation. Thus, the use of

mathematical experimental planning using software will allow

to accelerate the conduct of experiments dozens of times,

sharply reduce their number and quickly identify the optimal

variant of the studied process.

Further scientific research into heterogeneous

multicomponent systems using the developed software will

contribute to the development of Ukraine's chemical complex

and the production of modern polymer composite materials, the

production and use of which in various industries will increase

 9

the competitiveness of domestic products in the domestic and

foreign markets, significantly reduce the country's dependence

on imported chemical products, and solve environmental and

social problems through the introduction of "green"

technologies.

 10

 CHAPTER 1. COMPOSITE NANOFILLED

SYNTHETIC FIBRE MATERIALS

Since ancient times, fibers, fibrous materials and

products made from them have played an important role in

people's lives. Until the beginning of the 20th century, the raw

materials for fibrous materials were natural fibers - wool,

cotton, flax, hemp, silk. With the expansion of requirements for

the performance characteristics of such materials, especially for

technical products, there was a need to create alternative fibers

and threads. Starting from the middle of the last century, the

development of the science of synthetic polymers, their ability

to transition to a viscous-fluid state and the ability to

longitudinally deform a liquid jet flowing from the spinneret

opening, determined the emergence and existence of the field

of technology of fibrous materials, including chemical fibers.

During this period, a group of so-called "classical" or

"traditional" fibers was formed: polyamide, polyester,

polyolefin, polyacrylonitrile, polyvinyl chloride and polyvinyl

alcohol. Today, traditional fibers are subjected to targeted

modification in order to improve or give them fundamentally

new functional characteristics. For this purpose, various

methods of modification are used, among which the most

common are physical (consists in reducing the dimensional

characteristics of individual filaments to micro- and nanosizes)

and composite, in which fibers are formed from binary

mixtures of polymers or with the introduction of various

additives (dyes, flame retardants, compatibilizers, substances in

the nanoscale, etc.). Due to this, fundamentally new types of

fibers and fibrous materials have appeared - high-strength,

 11

heat- and chemical-resistant, non-combustible, electrically

conductive, sorption, ion-exchange.

Composite materials include materials that consist of

two or more substances that structurally complement each

other and have properties that are absent in each individual

component. The performance of composites depends on many

factors: the chemical nature of the matrix and filler, volume

fraction, degree of dispersion, orientation, uniformity of the

distribution of additive particles, the size and properties of the

transition layer, etc. Among them, the size of nanoparticles

plays a dominant role. In accordance with the terminology

adopted by IUPAC (International Union of Pure and Applied

Chemistry), objects with a size not exceeding 100 nanometers

are considered nanoparticles. They can be of various shapes -

plates, tubes, spheroids, rods, while at least in one dimension

their size must be in the range from 1 to 100 nm. Filled

composite fibers and filaments in which at least one of the

components has the specified dimensions are called nanofibers.

Nanomaterials have always existed in nature in the form

of composites filled with carbon black or natural clay, and have

been used for many centuries. At the same time, they are new

and little studied for materials science. The specificity of the

characteristics of substances at the nanometer scale and their

associated new unique properties are due to the fact that the

dimensions of the structural elements of nanoobjects lie in the

range (10-9÷10-7) m, have a complex internal organization, the

ability to pack tightly, strong lateral (side) interactions, as well

as a high surface area to volume ratio. The properties of

nanocomposites are also largely determined by the size of the

 12

transition layer at the filler/polymer phase interface. The

interface, which is around the nanoparticle, has a finite

thickness, within which the system parameters differ sharply

from similar characteristics in the polymer volume. The

experimentally determined thickness of the interfacial layer

ranges from 0.004 to 0.16 mm and depends on the degree of

affinity between the surface of the NPs and the functional

groups of the macromolecules of the polymer matrix [34]. The

chemical nature of the additives and their concentration

significantly affect the interfacial phenomena and properties of

composite fibrous materials.

 1.1. Synthetic classical fibers and threads filled with

nanoadditives of various chemical nature

The increasing requirements for the quality and

functional characteristics of fibers and threads lead to the

search for methods of their modification in order to provide

technical products and household goods made from them with

a set of unique consumer properties. Modern textile materials

for everyday and especially for special clothing must have high

mechanical and hygienic indicators, as well as reliably protect

a person from external negative factors (high and low

temperatures, increased content of gases and emulsions of toxic

substances, biological factors, electromagnetic radiation).

Nano-filled industrial synthetic fibers obtained by

processing melts or polymer solutions have been produced for

more than 20 years. Nanoparticles of various chemical nature,

size and configuration are used for their modification: carbon

derivatives, natural minerals, metals, metal oxides, etc. In this

case, NPs with the desired size, shape and functional properties

 13

are selected from previously obtained ones or they are

synthesized directly in the molding solution or on the surface

of the finished fibers. Depending on the method of introducing

nanoadditives, their content, dispersion and continuity of the

structures that they form in the volume of the material, fibers

with fundamentally new characteristics are obtained, which can

be divided into bulk and surface. Bulk properties include

mechanical, light, heat and electrical conductivity, density, etc.

Surface properties are the sorption characteristics of fibers in

relation to various substances (liquids, gases, ions, dyes), their

catalytic activity, reflectivity, dyeing ability and other

indicators that depend on the electronic structure of atoms

located on the surface of the particles they form.

The unusual structure of natural aluminosilicates and

their inherent properties provide broad opportunities for the

creation of a range of multifunctional polymer materials. The

basis of clays are silicon and alumina ions, which form,

respectively, tetrahedral and octahedral two-dimensional

networks interconnected into layers (plates) with dimensions of

~ (1000x1000x1) nm, which self-organize into packages with

an interlayer space of up to 50 nm. The outer and inner

surfaces of the plates are hydrophilic and polar, which

promotes wetting and penetration into the space between the

layers of both low- and high-molecular compounds that have

polar groups in their structure. Due to this, layered silicates are

the most effective modifiers for hydrophilic polymers [35]. The

introduction of natural alumina particles into the structure of

synthetic fibers from polar polymers provides high electrical

and thermal conductivity, mechanical strength, chemical

 14

activity, protection against UV radiation and fire [3,4,36].

Thus, in polyamide fibers containing 5.0 wt. % of alumina

nanoparticles, the tensile strength and bending strength

increase by 40 and 60 %, respectively.

A more complex task is the modification of fibers

based on non-polar or weakly polar polymers. In this case, the

incompatibility of hydrophilic clays and hydrophobic

polymers is the main problem, to solve which clays are pre-

modified in various ways: by ion exchange of clay cations for

organic cations; by adsorption on the surface of water-soluble

polymers, alkyl ketones, methyl acrylate, surfactants; by

grafting organosilanes to the clay surface with the formation

of Si-O-Si bonds; by introducing organic molecules capable

of Van der Waals or ion-dipole interaction with the clay

surface, etc. [2,35]. The nature of the packing of modifier

molecules in the interlayer space determines the distance

between silicate plates, the organophilicity of clays and, as a

result, the structure of nanocomposites when mixed with

polymers. Filling polypropylene fibers with organomodified

alumina allows to eliminate their significant disadvantage as

textile threads, namely the ability to dye. Fibers containing

15.0 wt. % alumina are dyed with dyes of various classes to

achieve deep tones, which significantly expands the areas of

their application in the production of household materials.

The discovery of carbon nanotubes (CNTs) in 1991 led

to significant progress in the field of nanotechnology and

marked a new era in the material world, including in the field

of chemical fibers. Single- and multi-walled CNTs are

characterized by a complex of unique mechanical, electrical,

 15

thermal and chemical properties, as well as a high ability to

transport electrons. The elastic modulus of carbon nanotubes

approaches the values of this indicator for diamond (1.0 and

1.2 TPa, respectively), their strength is 100 times higher than

the best samples of steel. They are also characterized by high

electrical conductivity, thermal stability (up to 2800 0 C in

vacuum), thermal conductivity (approximately twice as high as

that of diamond). The elasticity of multi-walled CNTs can

reach 5000 GPa, they bend like a straw, but do not break and

can straighten without damage [5]. Due to their ultra-high

mechanical properties, single- and multi-walled carbon

nanotubes are a particularly attractive reinforcing filler. The

strength and Young's modulus of polypropylene fibers are

increased by almost 3 times when 5.0 vol. % of CNTs are

introduced into their structure, provided that they are

additionally oriented [37]. Polyvinyl alcohol fibers filled with

nanotubes are 120 times stronger than steel wire and 17 times

lighter than Kevlar fiber. The introduction of (0.5÷3.0) wt. %

of CNTs into the melt of polypropylene of different grades

provides an increase in the tensile strength of monofilaments

(P) and their dimensional stability (estimated by the value of

the initial modulus E) in the entire range of additive

concentrations [38]. The dependences of P and E on the CNT

content are extreme: maximum values are achieved when 0.5

wt. % of the additive is introduced. The best mechanical

characteristics are possessed by monofilaments formed from

PP with lower viscosity, which may be associated with a

thinner and more uniform dispersion of CNTs in the melt.

Adding nanotubes to synthetic fibers in an amount of 5 to 20

 16

wt. % provides them with electrical conductivity at the level of

copper wire and chemical resistance to the action of many

reagents [39]. To date, a significant problem in creating high-

performance polymer/CNT composites is the difficulty of

uniform dispersion and orientation of nanotubes in the matrix.

The new method of “layer-by-layer planting” proposed by the

authors [40] allowed the formation of polyvinyl alcohol fibers

with adjustable CNT orientation, as a result of which the

reinforcement effect increased sharply – the strength of the

fibers increased from 50 to 1255 MPa, and their electrical

conductivity also increased. The formation of a percolation

network by carbon nanotubes in the polymer matrix provides

an increase in thermal, optical, and electrical parameters even

at an additive concentration of 0.0025 wt. % [6].

 Effective modifiers are also nanoparticles of metals

(Ag, Cu, Ti, Mn, Zn, Au, Pt, Pa) and metal oxides. Fibrous

materials with additives of copper, nickel and silver NPs

exhibit sorption and biocatalytic properties, with platinum

inclusions they are catalytically active, and nickel-, iron- and

cobalt-containing ones acquire magnetic characteristics [10,41-

44]. The introduction of zinc oxide NPs in the form of

nanorods into polypropylene fibers improves their mechanical

performance [11]. Polyester textile threads filled with ТiO2,

Al2O3, ZnO and MgO nanoparticles exhibit photocatalytic

activity, protection from UV radiation, antistatic properties,

and abrasion resistance [12,13]. Modification of synthetic

fibers with TiO2 and ZnO nanoparticles gives products made

from them the ability to self-clean like plant leaves, insect

wings, etc. The introduction of aluminum oxide nanoparticles

 17

[25] and silicas with different specific surface areas [45] into

their structure contributes to the improvement of the

mechanical properties of polypropylene monofilaments. The

use of combined nanoadditives enhances the modifying effect

and expands the spectrum of operational characteristics of

fibers and products based on them. The introduction of

silver/silica [14], silver/alumina [46], and mixed oxide

TiO2/SiO2 [47] into the structure of PP monofilaments gives

them biological activity and improves mechanical properties.

Nanosized silicon dioxide in the structure of synthetic fibers

prevents pollution and promotes self-cleaning of products

made from them, and the bifunctional additive TiO2/SiO2

makes it possible to create a new generation of effective

nanofilled materials for cleaning technological environments,

including the medical industry [48]. In terms of their sorption

performance, they exceed ion exchange resins, while being 5

times cheaper than them. Such nanocomposites absorb a wide

range of metal ions from water, destroy organic compounds,

concentrate and separate radionuclides.

 1.2. Nanofilled composite yarns and fine-fiber

materials from melts of polymer blends

 Polymer blending is a simple and affordable way to

obtain new composite fibrous materials with predicted

properties and is more effective than the synthesis of new

monomers and polymers. Blends can be fully compatible or

incompatible and partially compatible. In this case, various

types of polymer dispersions occur - from simple binary to the

formation of block copolymers, interpenetrating networks,

microfibrillar or droplet structures, molecular composites, etc.

 18

[3,49]. The formed types of phase morphologies determine the

properties of such systems. Of particular interest are mixtures

in which a component of the dispersed phase forms micro- or

nanofibrils in the matrix of another. In the threads obtained

from them, a self-reinforcing effect occurs, the degree of which

can be regulated by changing the ratio of the sizes of the

reinforcing fibers. By increasing the length or decreasing the

diameter of the microfibrils, the mechanical properties of

microfibrillar composites (MFC) can be significantly

improved [50]. The process of obtaining MFC includes three

main stages: extrusion mixing of melts of two polymers with

different melting points (Tmp) and formation of an extrudate or

monofilament; their cold drawing for longitudinal orientation

and fibrillation of both phases; subsequent heat treatment at a

temperature in the range between the Tmp of the mixture

components, which ensures the formation of an isotropic

matrix.

 A schematic representation of the stages of the MFC

production process is shown in the figure 1.1 [51]. Threads

with a microfibrillar structure have a number of advantages

over traditional ones: increased strength and resistance to

deformation, relative ease of production and further processing,

reduced weight, etc.

 19

Fig. 1.1 – Scheme of formation of microfibrillar composites

 Today, the in situ formation of micro- or nanofibrils of

one component in the matrix of another has been implemented

for many pairs of polymers by extrusion [3,26-28,52-60],

blowing [61,62], uniaxial stretching [63] and 3D molding

[1,64,65]. Regulation of microfibrillar morphology (reduction

of fibril diameters, increase in their length and mass fraction) is

achieved by introducing special substances into the mixture of

incompatible polymers - compatibilizers [66], nanoadditives

[25-27,47,57,60,65] or their compositions [28,67,68]. It is

known that the properties of composite monofilaments largely

depend on the type of structure formed by the polymer of the

dispersed phase in the matrix. In this case, the formation of

morphology is determined by the course of a number of

microrheological processes that occur with droplets of the

dispersed phase during the flow of the melt, namely: their

dispersion, coalescence, deformation and migration. The

 Fibrillation

 20

degree of manifestation of each of them depends on the ratio of

the main ingredients of the mixture, the content of the additive

and its influence on the rheological properties of the

components and the course of interfacial processes. The

modifying effect of fillers on the structure of three- and four-

component systems is manifested in a change in the ratio of

viscoelastic properties of the ingredients, a decrease in the

value of interfacial tension and an increase in the stability of

liquid cylinders (fibrils). Nanoadditives in the melt of

thermodynamically incompatible mixtures play a dual role.

First, due to the compatibilizing effect in modified systems, the

degree of dispersion of the fiber-forming polymer and the

kinetic stability of the melts increase, and the processes of

droplet aggregation are inhibited, which contributes to

obtaining a finer morphology. Secondly, NPs give fibrous

materials unique properties inherent in substances in the

nanoscale.

1.2.1. Nanofilled composite threads with microfibrillar

structure. One of the most studied systems for obtaining

threads with increased initial modulus and tensile strength are

blends of polyethylene terephthalate (PET) with polyolefins

(PO) or with polyamides (PA), since polyester fibers are

characterized by high resistance to deformation, which makes

them an ideal reinforcing element. The formation of PET

microfibrils in a PO and PA matrix allowed to significantly

increase the dimensional stability of the threads and obtain a

high-strength tire cord. Studies of the morphology and

mechanical properties of composite threads based on PET/PP

blends filled with titanium oxide nanoparticles showed that the

 21

morphometric characteristics of the fibrillated PET phase,

namely their diameter and length and distribution uniformity,

depend on the concentration and size of the filler nanoparticles

[26,28]. At a titanium oxide NP content of 4.0 wt. % the

average diameter of microfibrils decreases from 5.4 μm to 1.1

μm, and the range of diameters narrows from (2.0÷9.2) to

(0.6÷4.5) μm compared to the original mixture. At the same

time, their length also increases. The change in the structure of

the threads caused an increase in the modulus and tensile

strength by 1.4 and 1.3 times, respectively.

The possibility of controlling the process of PP

microfibril formation in the SPA matrix by introducing into the

melt of the PP/SPA mixture of 30/70 wt. % nanoparticles of

oxides of various metals was shown by us in the works

[25,69,70]. As can be seen from the microphotographs of

cross-sections of extrudates of PP/SPA/aluminum oxide

mixtures shown in Fig. 1.2, in the initial mixture PP is roughly

dispersed in the SPA matrix. The introduction of

(0.1÷3.0) wt. % Al2O3 nanoparticles into the system

contributes to improving the compatibility of components at

the phase interface and causes an increase in the degree of

dispersion and uniformity of distribution of polymer particles

of the dispersed phase in the dispersion medium. The

modifying effect is achieved due to the compatibilizing

(emulsifying) action of aluminum oxide nanoparticles, as

evidenced by the decrease in the interfacial tension in

nanofilled mixtures [70].

 22

Fig. 1.2 – Microphotographs of cross-sections of extrudates of mixtures with
different aluminum oxide contents, wt. %: a) 0; b) 0,1; c) 0,5; d) 1,0; e) 3,0

Microscopic studies of longitudinal sections of

extrudates (Fig. 1.3) and residues of the dispersed phase after

extraction of the matrix polymer (Fig. 1.4) indicate that

aluminum oxide nanoparticles do not prevent droplets of the

dispersed phase from deforming and merging with the

formation of liquid jets (microfibrils) of PP in the SPA matrix.

 a)

 a) b)

 c) d)

 e)

 23

Fig. 1.3 – Micrograph of a longitudinal section of a PP/SPA/ Al2O3

extrudate with a nanoadditive content of 1.0 wt. %

During the treatment of extrudates with a solvent selective for

PP, the copolyamide goes into solution, and the dispersed

phase remains mainly in the form of a bundle of microfibrils

(Fig. 1.4). Microscopic studies of the influence of the

concentration of aluminum oxide NPs on the dimensional

characteristics of different types of polypropylene structures

indicate that, along with microfibrils, a small number of films

and micron-sized particles are also formed. Microfibrils are the

predominant type of structure in extrudates of the original and

nanofilled mixtures. When aluminum oxide NPs are added, the

diameter of the microfibrils decreases, and their mass fraction

increases in the entire concentration range. At the same time, at

a nanoadditive content of 1.0 wt. %, the average diameter of

the microfibrils decreases to 2.2 μm (versus 4.0 μm for the

original mixture), and their fraction increases to almost 95%.

This is due to the increased resistance of nanofilled microfibrils

of smaller diameters to decay, as evidenced by a decrease in

 24

the value of the instability coefficient and an increase in their

lifetime [70].

Fug. 1.4 – Electron micrograph of dispersed phase (PP) structures after

matrix polymer (CPA) extraction

 The studies performed showed that the introduction of

aluminum oxide NPs into the melt of the PP/SPA mixture not

only does not complicate their processing, but even increases

the stability of the formation and thermal orientation drawing

of modified monofilaments. It is known that during the

spinneret and thermal orientation drawing process, further

deformation of the dispersed phase structures occurs, while the

microfibrillar morphology in the monofilaments is preserved

(Fig. 1.5) [59].

 25

Fig. 1.5. Electron micrographs of polyoxymethylene microfibrils (at various

magnifications) formed in situ in ethylene vinyl acetate copolymer

Important indicators of the threads, from the point of

view of further processing and the quality of products based on

them, are mechanical characteristics. The tensile strength and

modulus of elasticity of composite monofilaments from

nanofilled systems are improved, compared with the threads

from the original mixture (Table 1.1). This is natural, since in

the PP/SPA/Al2O3 mixture a matrix-fibrillar morphology is

formed, that is, the effect of self-reinforcing the threads takes

place. In this case, the modifying effect depends on the

concentration of the nanoadditive: an increase in the content of

aluminum oxide NPs from 0.1 to 1.0 wt. % is accompanied by

an increase in the strength and dimensional stability of the

threads, and at a concentration of 3.0 wt. % the values of P

and E decrease. The degree of increase in the mechanical

 a) b)

 c) d)

 26

indicators of the monofilaments correlates with the

morphology of the extrudates and the dimensional

characteristics of PP microfibrils. Their minimum diameter and

maximum proportion in the structure determine the highest

values of strength and resistance to deformation of

monofilaments formed from a mixture containing 1.0 wt. %

alumina.

Тable 1.1 – Effect of aluminum oxide nanoparticle content on

mechanical properties of composite monothreads

Name of
polymer,

mixture

Content of
Al2O3, wt.

%

Extrac-
tion

multipli-

city

Strength,
MPa

Elastic
modulus

MPa

Elonga-
tion, %

СPА 0 6,0 270 3240 13,7

PP 0 7,2 390 4970 8,9

PP/С{А 0 4,0 310 3870 14,6

PP/СPА 0,1 4,3 360 3910 14,0

PP/СPА 0,5 4,5 390 4100 13,8

PP/СPА 1,0 5,0 430 4520 12,1

PP/СPА 3,0 5,0 390 4150 11,9

The obtained result is consistent with our previous conclusion

that the values of P and E reach maximum values when the

entire polymer of the dispersed phase forms microfibrils [59].

Recent studies have shown that the most effective is the

combined use of substances in the nanostate and traditional

compatibilizers [27-29,71,72]. Thus, it was shown that for an

incompatible PP/PA mixture, there was a synergistic effect on

the morphology of the nanodispersed additive (hydrophobic

silica NPs) and the compatibilizer (polypropylene with grafted

maleic anhydride PPgMA): the addition of PPgMA provided a

 27

12-fold reduction in the size of polyamide droplets, and when

used simultaneously with a nanoadditive – 25-fold [71]. The

introduction of polystyrene additives with grafted maleic

anhydride (PSgMA) into the PS/PA/CNT mixture allowed to

increase the uniformity in size and geometric shape of

polystyrene droplets and the mechanical properties of

composites [72]. Modification of the CNT surface with a

surfactant ionic liquid promoted the formation of a percolation

network structure by nanotubes in the polymer matrix, as a

result of which the electrical characteristics of composites

based on PS/butylene adipate and terephthalate copolymer

mixtures were dramatically improved. In this case, double

percolation occurred, and the formation of a network structure

by nanotubes also caused a significant increase in the elastic

modulus. Biodegradable biological materials with improved

mechanical properties were obtained by simultaneously using

multilayer CNTs and organomodified montmorillonite - a

synergistic effect was achieved with a content of 0.5 wt. % of

nanoadditives [29]. Simultaneous introduction of two

compatibilizers into the PP/SPA mixture made it possible to

implement a microfibrillar structure in compositions with a

ratio of components corresponding to the phase change region

(40/60 and 50/50 wt. %) [66]. The authors [28] showed that the

simultaneous use of a nanodispersed additive (ТiO2) and a

compatibilizer (PPgMA) in PP/PET blends is the most

effective and provides maximum improvement in the

mechanical properties of composite yarns by increasing the

length and minimizing the diameter of PET fibrils in the

polypropylene matrix.

 28

Systematic studies on the possibility of controlling the

process of microfibrillar structure formation in melts of

thermodynamically incompatible polymer mixtures by

introducing compatibilizer/nanoadditive compositions and

establishing the structure–property relationship of fibrous

materials have been conducted at KNUTD for many years

[27,32,47,59,67,68]. Thus, carbon nanotubes and PPgMA

compatibilizer were used to modify a PP/SPA mixture of 20/80

wt. %. The mechanical properties of monofilaments formed

from the original polymers and modified mixtures are

presented in Table 1.2 [27]. As can be seen from Table 1.2, the

introduction of 20 wt. % of stronger PP into the copolyamide

leads to an improvement in the mechanical performance of

monothreads. The tensile strength and initial modulus of

monofilaments, in the structure of which there is a nanofiller or

compatibilizer, also increase. In all the studied mixtures,

polypropylene forms in situ microfibrils in the SPA matrix and

provides self-reinforcement of the threads.

Тable 1.2 – The effect of modifier additives on the mechanical

properties of monofilaments

Sample name
Linear

density,

text

Strength

MPa

Elastic
modulus

MPa

Elonga-
tion, %

PP 5,6 370 2600 9,4

СPА 7,3 210 3240 20,9

PP/СPА 8,1 260 3870 15,6

PP/СПА/PPgМА 9,1 320 3750 17,3

PP/СПА/CNТ 11,0 340 4680 20,1

PP/СPА/CNT/

PPgМА
10,3 390 5110 19,8

 29

The addition of compatibilizer and carbon nanotubes

contributes to the reduction of microfibril diameters and the

proportion of unwanted structures (particles, films), resulting in

an increase in the strength and initial modulus of

monofilaments. The maximum improvement in the mechanical

properties of composite monofilaments occurs with the

simultaneous addition of CNTs and PPgMA, which

corresponds to the most perfect microfibrillar structure: the

average diameter is 1.5 μm (versus 2.6 μm for the original

mixture) and the proportion of films, the presence of which is

known to worsen the mechanical properties of the filaments, is

sharply reduced [59].

The possibility of controlling the process of self-

reinforcing composite yarns from a PP/PVA blend by

simultaneously introducing a nanofiller and a compatibilizer is

shown in [67]. Quantitative microscopic studies of the effect of

a nanodispersed silver/silica additive, a sodium oleate

compatibilizer (С18Н33О2Na) or their combination on the

microstructure of PP/PVA extrudates indicate that individual

substances and their binary composition have an emulsifying

effect on the melt and allow regulating its morphology. In

modified compositions, the average diameter of microfibrils (đ)

decreases and their mass fraction increases, and the number of

other types of structures decreases (Table 1.3). In this case, the

simultaneous use of a nanofiller and a compatibilizer is more

effective.

 30

Тable 1.3 – The influence of additives silver/silica, sodium

oleate or their compositions on the characteristics of structure

formation processes in melts of PP/PVA blends

Name of the mixture,

content of components,

wt. %

Microfibrils

Content of
structures of
other types,

wt. %

đ, μm
conten
t, wt.

%

Parti-
cles

films

PP/PVA, 30/70 3,5 86,5 3,9 9,6

PP/PVA /Ag/SiO2, 30/70/1 1,6 90,6 3,3 6,4

PP/PVA /С18Н33О2Na, 30/70/3 1,4 92,7 3,6 3,7

PP/PVA /Ag/SiO2 /С18Н33О2Na

30/70/1/3
1,1 97,9 1,2 0,9

As can be seen from Table 1.3, the diameter of microfibrils in

the four-component mixture decreases by 3.2 times, while

when adding 1.0 wt. % Ag/SiO2 nanoparticles or 3.0 wt. %

sodium oleate, đ decreases by 2.2 and 2.5 times, respectively.

In the presence of two modifiers, migration processes are

significantly slowed down, which leads to a sharp drop in the

number of films.

 Studies of the mechanical properties of composite

monofilaments show that they also indirectly correlate with the

microstructure formed by the polymer of the dispersed phase in

the matrix (Table 1.3, 1.4). The highest indicators of strength

and resistance to deformation are those of threads formed from

a composition modified with a nanofiller and a compatibilizer

simultaneously. In this case, polypropylene is present in the

PVA matrix mainly in the form of thinner microfibrils, and the

proportion of films is reduced by almost 10 times.

 31

Тable 1.4 – The effect of silver/silica, sodium oleate or their

compositions on the mechanical characteristics of composite

monofilaments from a PP/PVA blend

Name and composition of the

mixture, wt %

Tex Tensile

strength,

MPa

Initial

modulus

, MPa

Elongati

on, %

PP/PVA, 30/70 8,1 300 4200 9,3

PP/PVA /Ag/SiO2 , 30/70/1 7,4 390 4800 13,0

PP/PVA /С18Н33О2Na, 30/70/3 7,2 470 5300 8,5

PP/PVA /Ag/SiO2 /С18Н33О2Na,
30/70/1/3

7,0 550 6400 8,0

Thus, the maximum self-reinforcing effect of composite

filaments formed from compatibilized nanofilled incompatible

polymer blends is the result of improving their matrix-fibrillar

structure.

1.2.2. Nanofilled fine-fiber materials derived from

microfibrillar composites. Today, there are a number of

methods for producing fine-fiber materials with micro- and

nano-sized diameters: aerodynamic spraying of the melt with a

jet of compressed air [73-75], electroforming from a polymer

melt or solution under the action of electrostatic forces [76-80],

and processing of melts of mixtures of thermodynamically

incompatible polymers into composites with a micro- and

nanofibrillar structure [57-65,81-86].

 Aerodynamic forming produces nonwoven materials

(NM) with fiber diameters of (1.0-20.0) μm. With the

maximum increase in air velocity during polymer melt

blowing, NM were formed from nanofibers with an average

diameter of ~ 500 nm [75]. Electroforming produces nanofiber

sheets with individual filament diameters of 10 nm or more,

 32

but the use of this method is limited by low productivity and

high toxicity of solvents. In order to give nonwoven materials

new properties (for example, increasing filtration efficiency

and reducing hydraulic resistance of filter materials), they are

obtained on the basis of micro- and nano-sized fibers by

combining blowing and electrospinning methods [76,79], but

the production of such materials is complicated by the

incompatibility of the forming speeds in both methods. In

recent years, needle-free electrospinning technology has been

developed, which can eliminate the shortcomings of traditional

electroforming devices, such as low productivity, non-

uniformity of sheets in thickness, limited size, and difficulty in

cleaning a single needle [80]. The developed needle-free

electrospinning apparatus can be used for the industrial

production of nanofiber membranes of considerable width.

By processing melts of thermodynamically incompatible

polymer mixtures for which microfibrillar morphology is

realized, fine-fiber materials are obtained in the form of

complex threads, staple fibers or nonwovens, in which

individual filaments have micro- or nanosizes [57-65,81-87].

The structure of the composite monofilament or film, which

comes out of the molding hole, is a continuous phase of the

dispersion medium filled with thin jets (fibrils or microfibers).

After extraction of the matrix from the composites with a

solvent inert to the polymer of the dispersed phase, bundles of

micro- and nanofibers or nonwoven webs from them remain.

Fig. 1.6 shows a micrograph of polypropylene microfibrils with

an average diameter of (1.5÷2.5) μm after dissolution of

copolyamide from the composite strand [64].

 33

Fig. 1.6. Electronic microphotograph of PP microfibrils after

extraction of SPA from the strand

By forming a jet on a capillary viscometer with subsequent

thermal drawing from the melt of a polybutylene

terephthalate/polypropylene (PBTE/PP) mixture, PBTE

nanofibers with a diameter of 600 nm and a length of 100 μm

were obtained [88]. By processing polyethylene terephthalate

(PET)/PP [26] and polytetrafluoroethylene/polylactide

(PTFE/PL) [86] compositions by extrusion, PET microfibrils

with diameters of (2.0÷9.2) μm and PTFE nanofibers with

diameters of (100÷500) nm were formed. Nonwoven material

from polypropylene microfibers was obtained after extraction

of the matrix polymer from composite films formed from the

melt of a PP/SPA mixture on a worm press through a flat-slot

head of the “fishtail” type [57]. The microfibers had diameters

ranging from tenths of a micrometer to several micrometers,

were of practically continuous length, and were oriented in the

direction of extrusion. By processing mixtures consisting of

two polymers of the dispersed phase and the matrix, a

 34

nonwoven material with a bimodal distribution of fibers by

diameter was obtained [61]. Nonwoven fabrics were formed

from mixtures in which the matrix polymers were polystyrene

(PS) or polyethylene oxide (PEO), and the dispersed phase was

polyethylene (PE) and polyamide 6, by the blowing method.

After dissolving PS with tetrahydrofuran and PEO with water,

a fine-fiber material with an average diameter of PA6

microfibers ~ 9.0 μm and PE nanofibers ~ 600 nm was

obtained.

1.2.2.1. Nanofilled complex microfibrillar threads.

Modification of the properties of synthetic fibers and threads

by reducing the diameters of filaments to micro- and nano-

sizes and introducing nano-additives into their structure is one

of the most promising areas in the field of chemical fiber

technology, as it allows significantly improving the quality of

products and reducing the material intensity of production.

Materials from ultrafine fibers retain all the positive properties

inherent in products from traditional synthetic fibers: strength,

high dimensional and wear resistance. At the same time, due to

the very small diameter of individual filaments in textile

products from them, many air voids can form. Thanks to them,

free air exchange occurs between human skin and the external

environment, i.e. such materials have better hygienic

properties. Formation of complex microfibrillar fibers and

threads by processing melts of polymer mixtures allows you to

regulate their consumer characteristics both due to the

properties inherent in nanofillers and due to their effect on the

size of the filaments of the dispersed phase component in the

matrix.

 35

The dependence of the mechanical properties of complex

yarns from polypropylene microfibrils on the content of

nanoadditives and their chemical nature is given in Table 1.5,

1.6 and Fig. 1.7. Microfibrillar yarns were obtained by

extraction of the matrix polymer from monofilaments formed

from PP/SPA mixtures filled with aluminum oxide

nanoparticles [25], as well as bicomponent nanoadditives

TiO2/SiO2 [47], Ag/ SiO2 and Ag/Al2O3 [87]. As can be seen

from Table 1.5, the tensile strength, elastic modulus and

elongation of complex yarns from the initial mixture are close

to similar values for textile polypropylene yarns formed using

traditional technology. The introduction of aluminum oxide

nanoparticles into their structure leads to an increase in

mechanical properties, the degree of increase of which, as for

composite monofilaments, is determined by the content of the

nanoadditive and correlates with the dimensional

characteristics of PP microfibrils.

Тable 1.5 – Effect of nanoscale alumina content on mechanical

properties of complex threads

Contetn

of
Al2O3,

wt. %

Strength,

MPa

Elastic

modulus,
GPa

Elonga-

tion,
%

Maintaining

strength, %

in a knot

in a loop

0 260 3,50 12.3 63 68

0.1 310 3,75 11.4 67 71

0.5 335 4,08 11.2 72 75

1.0 380 4,29 11.0 75 78

3.0 360 4,15 10.3 70 73

The minimum average diameter of microfibrils (2.2 μm) and

their maximum proportion (94.9 wt. %) in the extrudate of the

 36

mixture containing 1.0 wt. % Al2O3 provided mono- and

complex filaments with the highest strength and modulus of

elasticity. In addition, microfibrillar filaments are characterized

by improved elasticity, compared with textile polypropylene

filaments, as evidenced by the values of strength retention in

the loop and knot.

 Table 1.6 presents the results of a study of the influence

of the content of the mixed oxide TiO2/SiO2 on the properties

of complex fibers from nanofilled PP microfibrils [47]. The

data in the table indicate that the nature of the dependence of

the mechanical properties of microfibrillar fibers on the content

of the nanofiller is similar to that described for fibers modified

with alumina.

Тable 1.6 – Effect of TiO2/SiO2 nanoparticles concentration

on the properties of complex threads

Content of
TiO2/SiO2,

wt. %

Strength,
MPa

Initial
modulus,

GPa

Elon-
gation,

%

Specific
surface

area, m2/g

0 160 2,8 13,3 84

0,5 190 3,5 11,8 135

1,0 240 3,8 12,6 190

3,0 220 3,4 11,7 210

Increasing the concentration of mixed oxide NPs to 1.0 wt. %

leads to an increase in strength and initial modulus by 1.5 and

1.3 times, respectively, and its further increase is accompanied

by some deterioration of the mechanical characteristics of the

threads, which is associated with an increase in the diameters

of microfibrils, as well as the number of films. The

introduction of (0.5÷3.0) wt. % TiO2/SiO2 nanoparticles into

the microfibril structure leads to an increase in their specific

 37

surface area in the entire concentration range.

 Bifunctional inorganic substances in the nanostructure –

silver/silica and silver/alumina also contribute to improving the

quality of microfibrillar filaments: their tensile strength (P)

and elastic modulus (E) increase (Fig. 1.7). At a concentration

of nanofillers in the mixture of more than 1.5 wt. %, the growth

rate slows down. The established dependence is natural and

may be associated with the effect of filling with a high-

modulus nanodispersed additive, as well as with a change in

the morphology of complex filaments [87].

 а) б)

Fig 1.7 – Effect of nanoadditive concentration on the strength (a)

and modulus of elasticity (b) of microfibrillar PP threads: 1– Ag/SiO2; 2 –
Ag/Al2O3

The effect of modification with Ag/SiO2 additive is more

pronounced compared to Ag/Al2O3 nanoparticles, which is due

to their higher specific surface area. It is known that silicas

provide a significant improvement in the mechanical properties

of filled compositions. In this case, the reinforcing effect of

silica NPs correlates with the value of its specific surface area:

 38

the modulus increases when Ssa ≥ 50 m2/g, and the degree of

reinforcement increases with the increase of this indicator [89].

The possibility of improving the quality of complex

yarns by simultaneously using two modifying additives of

nanofiller and compatibilizer is shown in [68] on the example

of complex yarns obtained by processing mixtures of

PP/CPA/CNT and PP/CPA/CNT/compatibilizer. Ethylene

copolymer with vinyl acetate or sodium oleate was used as a

compatibilizer. Studies of the mechanical properties of yarns

from PP microfibrils showed that adding 0.1 wt. % of carbon

nanotubes to the mixture increases their strength and initial

modulus (Table 1.7). From the electron micrographs shown in

Fig. 1.8, it is clear that under the influence of the nanoadditive,

the diameters of PP microfibrils decrease, and they acquire the

correct cylindrical shape. The number of so-called “varicose”

fibers, which are formed as a result of incomplete

decomposition of liquid jets, also decreases. All this

contributes to the improvement of the mechanical properties of

the threads.

Тable 1.7 – Effect of CNT and CNT/compatibilizer additives

on the mechanical properties of complex threads

Additive

Tex
Strength,

MPa

Initial

modulus,

GPa

Elonga-

tion,

 % name
content,

wt. %

без добавок 4,2 170 2,8 13,3

CNT 0,1 4,0 230 3,5 10,7

CNT/ CEVA 0,1/3,0 3,3 255 3,8 13.6

CTN/С18Н33О2Na 0,1/3,0 3,1 275 4,5 12,7

The introduction of a compatibilizer into the nanofilled mixture

contributes to further improvement of the mechanical

 39

properties of the threads. At the same time, the modifying

effect depends on the chemical nature of the compatibilizer.

The binary additive CNT/sodium oleate is more effective than

CNT/CEVA - the strength and initial modulus of the threads

are higher by 12 and 25%, respectively. This is due to their

different effects on the morphology of incompatible PP/SPA

mixtures. In compositions with sodium oleate additives, PP

microfibrils quantitatively predominate over other types of

structures and have a smaller diameter, which is one of the

reasons for the increase in the performance characteristics of

complex threads.

Fug. 1.7 – Electronic microphotographs of polypropylene

microfibrils from PP/CPA/CNT blends with the following

composition: 30/70/0 (a); 29.9/70/0.1 (b)

. The simultaneous use of a nanoadditive and a

compatibilizer significantly improves the hygienic properties of

modified microfibrillar threads - their hygroscopicity,

determined by the value of equilibrium water absorption,

increases by (15÷20) times [68]. This is due to changes in the

 а) b)

 б)

 40

pore structure and an increase in the specific surface area of

microfibrils (Table 1.8). The values of the specific surface area

(Ssa) of unmodified microfibrils, calculated from the drying

thermograms of the water sorption-desorption process, exceed

the Ssa of traditional polypropylene textile threads by several

orders of magnitude.

Тable 1.8 – Effect of CNT and CNT/compatibilizer additives

on the specific surface area and porosity of PP microfibrils

The introduction of CNT additives causes an increase in the

specific surface area by 2.1 times (Table 1.8). For microfibers

containing binary CNT/compatibilizer additives in their

structure, there is a further increase in Ssa. At the same time, the

volume of micro- and macropores increases, and ultrapores

almost do not change.

1.2.2.2. Nonwoven materials made of ultrafine nanofilled

fibers. Fibrous materials with filament diameters of micro- and

nanoscale dimensions demonstrate unique chemical, physical

and mechanical properties, they are characterized by a very

high surface to volume ratio, which ensures their wide

application as highly efficient sorbents, precision purification

filters, membranes for separating liquid and gaseous media,

Добавка Об’єм пор, м3/г·10-3 Питома
повер-

хня,

м2/г
назва

вміст,

мас.

%

макро-

пори

мікро-

пори

ультрапори

полі-

шар

моно-

шар

без добавок 1,4 1,04 0,42 0,58 84,0

ВНТ 0,1 4,5 6,0 0.53 0.52 180,0

ВНТ/СЕВА 0,1/3,0 3,9 7,3 0,43 0,49 190,0

ВНТ/ол.Na 0,1/3,0 2,7 8,2 0,42 0,59 220,0

 41

special and medical products, etc. A biodegradable fibrous

material with individual filament diameters from 800 nm to

9 μm was obtained by electroforming, which is characterized

by ultra-high hydrophobicity and the ability to sorb oil and oil

products (their sorption reaches more than 100 grams per 1

gram of fiber) [78]. By the method of needle-free

electrospinning from industrial polymers of polyvinyl alcohol,

polyacrylonitrile (PAN) and mixtures of PAN with

polyethylene oxide or polyethyleneimide, nanostructured

membranes were obtained, which are one of the most

promising materials for solving the global climate problem -

reducing carbon dioxide emissions into the atmosphere by

reducing its concentration in the production of energy

enterprises and subsequent utilization [90]. The introduction of

titanium dioxide nanoparticles into the structure of the

filaments gives the membranes photocatalytic properties and

expands the possibilities of their application for a wide range of

environmental problems. By the method of extrusion from a

mixture of PL/PVA of composition 40/60 wt. %, a

biodegradable fibrous material for medical purposes from

polylactide fibrils with sizes from 400 nm to 1 μm was

obtained [91].

 Microfiltration using polymeric fine-fiber materials is

one of the simplest, most reliable and economically feasible

methods of purifying drinking water, atmospheric air and

technological gas and liquid media from mechanical

contaminants of micron and submicron sizes, bacteria,

microbes, etc. [92]. The main indicators characterizing the

operational properties of filter materials (FM), namely the

 42

retention capacity (efficiency) and permeability (specific

productivity) are determined by the size and shape of the

elements from which they are made. The average pore diameter

of the filter layers is the lower, the smaller the size of the

structural elements, and their shape is the more uniform, the

more geometrically uniform and correct the shape of the

structures forming the filter layer. In nonwoven materials

obtained by blowing or electroforming, the fibers have a

uniform distribution in diameters, however, due to their chaotic

(according to the law of chance) arrangement in the layer, there

is a probability of the formation of a certain number of pores

with diameters larger than the nominal.

The structural element of nonwovens obtained by

extraction of matrix polymer from composite films formed

from melts of the original and nanofilled PP/CPA mixtures on

a worm press through a flat-slot head of the “fishtail” type

were practically continuous PP microfibrils with diameters

from tenths of a fraction to several micrometers [57,59,60].

The advantage of FMs obtained by extraction of matrix

polymer from composite films with microfibrillar morphology

is an ordered homogeneous structure - microfibrils in the filter

layer are oriented in the direction of extrusion and are located

parallel to each other. To improve the performance of FM, the

structure of the filter layer was modified by adding nanofillers

to the mixture: pyrogenic silica (SiO2) and bifunctional

substances based on it - silver/silica (Ag/SiO2) and titanium

oxide/silica (TiO2/SiO2) [57]. The introduction of all additives

contributed to an increase in the mass fraction of microfibrils

(W) (Fig. 1.8) and a decrease in their average diameter (d)

(Fig. 1.9).

 43

Fig. 1.8. The influence of the concentration and chemical nature of

nanoadditives on the mass fraction of microfibrils in the extrudate:
1 – Ag/SiO2; 2 – SiO2; 3 – TiO2/SiO2

Fig. 1.9. Effect of concentration and chemical nature of

nanoadditives on the average diameter of microfibrils: 1 – Ag/SiO2;

2 – SiO2; 3 – TiO2/SiO2

d,

μ

m

C,

wt.

%

%

 W, wt

%%%

%

 C, wt.%

%

3

2

1

С wt.%

d, μm

1

2

3

 44

 As can be seen from Fig. 1.8 and 1.9, the effect of

nanoadditives on the morphology of the mixture depends on

their chemical nature and concentration. Nanoparticles of the

mixed oxide TiO2/SiO2 are more effective, compared to the

original silica and silver/silica NPs: the diameters of the fibrils

are the smallest, and their number in the extrudate is the

largest, which is due to the high polarity of the oxide. The lack

of interaction with the melt of non-polar polypropylene

promotes the migration of NPs from the volume of the PP melt

to the phase boundary of the components and localization in it.

The preferential placement of nanoadditives in the transition

layer most effectively reduces the value of the surface tension

and contributes to the formation of a finer morphology [3,93].

The curves of dependences W = f (C) and d = f (C)

have an extreme character – at the additive content of 1.0 wt. %

the average diameter of microfibrils is minimal, and their mass

fraction reaches maximum values for all investigated additives.

The decrease in the dimensional characteristics of microfibrils

is due to the compatibilizing effect of nanofillers. With an

increase in the concentration of NPs of all additives > 1.0 wt.

%, the structure coarsens. This may be due to the saturation of

the interfacial zone with the modifier. A similar effect of

reducing the surface activity of natural clay upon reaching a

certain concentration was also observed by the authors [94,95].

For the natural rubber (NR)/PP mixture, the dimensional

characteristics of the NR particles in the PP matrix decreased

linearly only at a clay content of up to 5.0 wt. % [94]. The

introduction of organomodified montmorillonite into the

PP/polystyrene mixture in an amount of (0.2÷2.0) wt. %

 45

contributes to a decrease in the dimensional characteristics of

the microstructure in the entire concentration range. The best

result is achieved at a clay content of 0.5 wt. %: the diameter of

microfibrils decreases by 1.6 times and the uniformity of their

distribution increases by ~ 5 times [95].

Analysis of the results of assessing the efficiency of

atmospheric air filtration from mechanical particles with a size

of (0.3÷1.0) μm by filter material from the initial and three-

component mixtures containing 1.0 wt. % of nanofiller shows

that the introduction of nanoadditives into the structure of

polypropylene microfibrils provides an increase in the

precision and efficiency of FM (Table 1.9).

Тable 1.9 – The influence of the chemical nature of

nanoadditives on the efficiency of atmospheric air purification

and the performance of filter materials

Additive

name

Efficiency, % (by particle size, μm) Produc-
tivity*
dm3/m2∙
hour

0,3 0,4 0,5 0,6 0,8 1,0

without

additives
78,6 83,5 85,9 87,8 91,9 99,4 4050

SiO2 99,8 100 100 100 100 100 10650

Ag/SiO2 99,3 99,9 100 100 100 100 10840

TiO2/SiO2 99,9 100 100 100 100 100 12230

* at a pressure of 0.5 · 105 Pa

 As can be seen from Table 1.9, the introduction of

nanoadditives into the structure of the filter layer provides an

increase in the retention capacity of PMs and their precision.

At the same time, the values of the purification efficiency are

indirectly correlated with the dimensional characteristics of the

structural elements of the filter layer - the retention of particles

 46

with a size of 0.3 microns with maximum efficiency (99.9%) is

demonstrated by PMs with mixed oxide additives. All modified

filter materials retain mechanical impurities with a size of 0.5

microns and above with an efficiency of 100%, and from the

original mixture only 85.9%. Such an improvement in one of

the main indicators of filters is due, first of all, to an increase in

the uniformity of the structure of the filter layer due to a

decrease in the average diameter of microfibrils by almost 2

times and improvement of their shape. When cleaning media

from mechanical impurities with a size of ≤ 1.0 μm through

fibrous filter materials, in addition to the so-called “sieve”

effect, a number of physicochemical processes play a

significant role, namely: the contact effect, adsorption,

Brownian diffusion [92]. Due to this, FM can retain particles

with diameters 5 times smaller than the pore size. The decisive

importance of the adsorption process is evidenced by a sharp

increase in the specific surface area to 84 m2/g for the original

and to (190÷352) m2/g for nanofilled PP microfibrils,

compared to fibers formed using classical technology (Tables

1.6, 1.10, 1.11).

Тable 1.10 – The influence of the chemical nature of

nanoadditives on the specific surface area and hygroscopicity

of polypropylene microfibrils

Additive name Specific surface area, m2/g Hygroscopicity, %

without additives 84 0,17

SiO2 244 0,35

Ag/SiO2 230 0,31

TiO2/SiO2 190 0,48

 47

Тable 1.11 – Effect of silica concentration on the specific

surface area of PP microfibrils

Silica content, wt. % Specific surface

area, m2/g
Growth rate

0 84 0

0,5 197 2,3

1,0 244 2,9

3,0 307 3,7

5,0 352 4,2

The permeability of filters is determined by the pressure

drop on both sides of the filter partition and the resistance of

the material to the medium being cleaned. Studies of the

performance of FM on distilled water showed its increase for

samples in the structure of which there are nanoparticles of the

original and modified silicas (Table 1.9). This is an unexpected

result, since an increase in the precision and efficiency of

filters of any class is usually accompanied by a decrease in

their permeability. The increase in performance is obviously

due to a decrease in the hydraulic resistance of the filter layer

due to the better hydrophilicity of nanofilled PP microfibrils

(Table 1.10). An additional factor that ensures the maximum

performance of FM modified with a mixed oxide is the ability

of materials with additives of TiO2 nanoparticles to self-clean.

 An effective method of regulating the structure and

operational properties of filter materials, which allows to

significantly expand the spectrum and areas of their

application, is the use of the 3D molding method (FDM

process) to obtain composite films with microfibrillar

morphology [64,65]. Studies performed using a PP/CPA

mixture have shown that when composite multilayer films are

 48

formed by FDM from strands with microfibrillar morphology,

they retain the structure laid down during extrusion. Nonwoven

filter material from such films can consist of several layers, in

each of which polypropylene microfibrils are oriented in one

direction and are located parallel to each other, and the layers

are perpendicular to each other (Fig. 1.10). This provides the

FM with increased mechanical performance and a uniform

ordered morphology.

 а) b)

Fig. 1.10 – Electronic microphotographs of the filter material:
a) surface layer, b) cross section

 In [64], it was shown that the filtration efficiency and

precision of FM were increased by reducing the diameters of

microfibrils in the strands, which was achieved by changing the

size of the cells of the filtration meshes and the pressure before

the die during processing on a single-screw extruder. The

possibility of regulating the dimensional characteristics of PP

microfibrils in the filter layer by changing the type of

equipment for compounding the ingredients of the mixture

(single-screw or twin-screw extruders) was also established

 49

[65]. The introduction of zirconium dioxide (ZrO2)

nanoparticles into the system is an additional factor that

provides regulation of the microfibrillar structure of composite

films and filter materials based on them in the direction of

reducing the diameters of microfibrils and narrowing their

distribution. Thus, if the components are mixed on a twin-

screw extruder and 2.5 wt. % of ZrO2 nanoparticles are added

to the mixture, the thinnest microfibrils are formed (the average

diameter is 640 nm) with a narrow distribution in transverse

dimensions. The results of evaluating the efficiency of

atmospheric air purification from mechanical impurities with a

size of (0.3÷1.0) microns show that it depends on the diameters

of microfibrils and the number of layers (Table 1.12).

Тable 1.12 – Efficiency of atmospheric air purification from

mechanical impurities

Composition of

the mixture for

obtaining FM

Num-

ber of
lay-

ers

Filtration efficiency, % (by particle size, μm)

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

PP/CPA

2

4
6

83,8

95,2

96,2

88,4

97,2

97,5

90,1

97,2

97,9

93,3

99,1

99,7

99,4

99,8

100

96,6

99,8

100

99,7

99,9

100

99,9

100

100

PP/CPA / ZrO2 2 94,1 97,3 98,9 99,9 100 100 100 100

PP/CPA * 1 78,6 83,5 85,9 87,8 89,3 91,9 97,4 99,4

* FM from film obtained by extrusion method

The retention capacity of filters naturally increases with an

increase in the number of layers, which is the result of an

increase in the uniformity of the pore morphology of the

material. The reduction of microfibril diameters to nanosizes in

the filter layer obtained from the PP/CPA/ZrO2 composition

 50

leads to a further improvement of one of the main

characteristics of the PM - a two-layer filter provides the

efficiency of gas medium purification at the level of materials

without filler, which consist of 4-6 layers.

Conclusion

Today, nanofilled fibrous synthetic materials are

industrially developed and widely used to provide products

made from them with the desired consumer effects. The

presence of substances in the nanoscale in the structure of

fibers and threads helps to improve their mechanical

properties, and in polymer mixtures enhances the self-

reinforcing effect of products made from them.

 In industry, nanofilled polymeric fibrous materials are

successfully used to manufacture new types of filters capable

of self-cleaning and preventing pollution. On their basis, a

new generation of effective sorbents is created for cleaning

technological environments, including the medical industry.

In terms of their performance, they exceed ion-exchange

resins, while being 5 times cheaper than them. Such

nanocomposites absorb a wide range of metal ions from

water, destroy organic compounds, concentrate and separate

radionuclides.

Polymer modification with nanoadditives also allows

solving environmental and social problems. Composites for

water purification and new environmentally friendly adsorbents

for environmental restoration have been created on the basis of

biopolymers. The development and implementation of modern

"green" technologies allows recycling and using secondary

polymer resources.

 51

Today, despite the large number of existing varieties of

polymer composites, the trend towards their further

improvement and the creation of new modern fibrous

nanofilled materials is constantly growing. Analysis of the data

presented in section 1 on the influence of nanofillers on the

performance characteristics of fibrous materials shows that one

of the determining factors is the content of modifying additives

in the structure of materials. In the technology of

multicomponent systems, the main criterion for testing

theoretical hypotheses remains the results of experiments,

which are laborious and long-term.

 Based on this, an important task is to maximally reduce

the transition time from laboratory experiments to industrial

samples. An effective means of increasing the efficiency of

scientific research is the creation of software for mathematical

modeling of experiments, processing their results, and

optimizing the composition of multicomponent mixture

systems in order to obtain modern fibrous materials with

improved properties.

 52

 CHAPTER 2. SOFTWARE FOR MATHEMATICAL

EXPERIMENTAL PLANNING AND OPTIMIZATION

OF THE COMPOSITION OF MULTICOMPONENT

SYSTEMS

 In chemical technology, most of the studied objects

belong to the class of complex systems, which are

characterized by a large number of interconnected parameters.

The task of studying such systems is to establish the

dependence between the input parameters - factors and output

parameters - indicators of the quality of the system's

functioning, as well as to determine the levels of factors that

optimize its output parameters. Today, there are two

approaches to solving the problems of identification and

optimization of complex systems: deterministic and stochastic

[96]. In the first method, before solving extreme problems, a

comprehensive study of the mechanisms of the phenomenon is

carried out, on the basis of which the system is given by a

clearly deterministic model (usually in the form of a system of

differential equations). In this case, the developed

mathematical apparatus of modern control theory can be used

to solve the optimization problem. However, such systems, due

to the complexity of a comprehensive study of the mechanism

of the phenomenon, are not amenable to a complete

mathematical description in a reasonable time, which limits the

application of the deterministic approach. In the absence of

complete knowledge of the mechanism of phenomena,

identification and optimization problems, i.e., finding optimal

conditions for the course of processes or optimal selection of

the composition of multicomponent systems, are solved using

experimental and statistical methods.

 53

 In the case of experimental and statistical studies of the

object, the relationship between the input and output

parameters of the system is usually described by a polynomial.

To estimate the coefficients of the polynomial that

approximates the real dependence (response function ψ), it is

necessary to have statistical data that characterize the state of

the system during operation. This information can be obtained

by passive or active experiment (setting up experiments at

certain points Xu = (х1u, х2u, ..., хku) (u = 1,2,...N) of the

permissible region of the space of controlled input parameters.

Provided that the influence of uncontrolled input parameters is

insignificant compared to controlled ones, the system under

study can be described by the following model:

 ξ (y) = φ (X) + έ (2.1)

 Today, in experimental and statistical research, the

method of mathematical planning of an experiment is widely

used, the essence of which is to select the number of

experiments and the conditions for their conduct, necessary and

sufficient to solve a given problem with the required accuracy,

methods for mathematical processing of their results and

decision-making. In experimental planning, the experiment

itself is considered as an object of research and optimization, in

which optimal control of the experiment is carried out.

Depending on the information about the system under study,

the research strategy changes in the direction of its

optimization for each specific stage. Experimental planning is a

powerful tool in conducting research and optimizing complex

systems, which allows you to significantly reduce the number

of experiments, and, thus, material costs and terms of

 54

conducting experiments, makes it possible to obtain

mathematical models and quantitative assessments of the

influence of various factors on the processes under study. The

use of experimental planning methods, in comparison with

traditional methods, allows you to increase the efficiency of

scientific research by up to 10 times. A mathematical model is

a system of mathematical relationships - formulas, functions,

equations that describe the object under study. Analytical

recording of the property–composition dependence has a

number of advantages over geometric methods of spatial

representation of complex surfaces for multicomponent

systems, namely: determination of property indicators directly

by calculation, its versatility, the possibility of application in

many fields of research (chemistry and chemical technology,

metallurgy, the building materials industry, medicine, biology,

agriculture, etc.). In addition, the problem is formalized, and

the obtained dependences can be calculated using software.

2.1. Basic concepts of the mathematical design of

experiments method

2.1.1. Factors, optimization parameters and models.

During experiments, they usually deal with objects of research,

which can be: technological processes, various compositions,

products, etc. For them, input parameters are distinguished -

controlled factors х1, х2, ..., хp, corresponding to the effects

on the system, and output (quantitative characteristics of the

research goal) - optimization parameters (criteria) у1, у2, ..., уl.

In this case, the model of the research object can be represented

as a cybernetic system with k+n+l inputs and m outputs

(Fig. 2.1) [96].

 55

 Each of the output parameters depends on the state of

the controlled part of the inputs, which is determined by the

k-dimensional vector X = (х1, х2, ..., хk); the controlled

uncontrolled part of the inputs, which is described by the

n-dimensional vector Z = (z1, z2 ...zn); the uncontrolled part,

which is determined by the l-dimensional vector

E = (e1, e2... el), and the outputs, i.e. the numerical

characteristics of the research objectives, are the optimization

parameters (criteria) у1, у2, ..., уl; y = F (X,Z,E). During the

experiments, each factor can take one of several values, called

levels. A fixed set of factor levels determines one of the

possible states of the cybernetic system. At the same time, this

set represents the conditions for conducting one of the possible

experiments. Each fixed set of factor levels corresponds to a

certain point in a multidimensional space, called the factor

space. Experiments cannot be implemented at all points of the

factor space, but only at those that belong to the admissible

region of the factor space G (Fig. 2.2).

The system reacts differently to different sets of factor

levels. At the same time, there is a certain relationship between

the factor levels and the reaction (response) of the system. The

function , which connects the optimization parameter with the

factors, is called the response function, and the geometric

 Fig. 2.1 – Model of the research object

Object of

research

 56

image corresponding to the response is the response surface

(Fig. 2.3).

 Fig. 2.2 Factor space

 Fig. 2.3. Response surface

O

G

X1 x1
(0)

O1

x2
(0)

X2

 57

 The form of the dependencies j for the system under

study is unknown in advance, therefore it is necessary to obtain

approximate equalities based on experimental data:

),...,,(ˆ ˆ
21 kjj xxxy  ,  lj ...

 The experiment must be conducted in such a way that,

provided that the minimum number of experiments is

performed, varying the values of the independent variables

according to specially formulated rules, a mathematical model

of the system can be constructed and the optimal values of its

properties can be found.

The selection of factors, optimization parameters and

models takes place taking into account the purpose of the study

and the existing conditions for conducting the experiment.

Factors are variables that acquire a certain value at some point

in time. They determine both the object itself and its state.

There are quantitative and qualitative factors. Quantitative

factors are variables that can be evaluated quantitatively,

namely: measured, weighed, etc.; qualitative factors do not

have a numerical assessment, but for them it is possible to

construct a conditional scale that carries out coding, establishes

a correspondence between the levels of the qualitative factor

and the numbers of the natural series. Factors can also be

controlled and uncontrolled. Controlled are such input

variables, the values of which in the experiment are known at

each point in time. Thus, when studying a technological

process, all variables that determine the state of the process and

the values of which can be estimated using appropriate

measuring instruments are controlled. Controlled variables, in

 58

turn, can be divided into controlled and uncontrolled.

Controlled factors are those whose values can be purposefully

varied during the experiment. Factors for which such a change

is impossible are called uncontrolled. These are input variables

whose values cannot be estimated during the experiment, or

those that have an impact on the results of the experiment, or

even factors about the existence of which the experimenter has

no information.

 The characteristic of the goal of an experiment or

research, given quantitatively, is called an optimization

parameter (optimization criterion, objective function).

Optimization parameters can be economic (profit, cost,

profitability, experiment costs, etc.), technical and economic

(productivity, stability, reliability, efficiency, etc.), technical

and technological (product yield, physical, mechanical,

physicochemical, medical and biological characteristics).

 A number of requirements are put forward for the

optimization parameter: effectiveness in terms of achieving the

goal (i.e., the optimization parameter should evaluate the

functioning of the system as a whole, and not its individual

subsystems); universality (the ability to comprehensively

characterize the object of study); quantitative expression in a

single number; the presence of a physical essence; simplicity

and accessibility of calculation. The number of values that an

optimization parameter can take is called its definition domain;

they can be continuous and discrete, limited and unlimited. The

researcher must be able to determine the optimization

parameter for any possible combination of selected levels of

factors.

 59

 For planning experiments, models in the form of

algebraic polynomials have found the greatest application. To

choose a specific model, it is necessary to formulate certain

requirements. These include adequacy (the ability of the model

to predict the results of the experiment in a certain area with

the required accuracy); meaningfulness (the model must well

explain already known facts, identify new ones and predict the

further behavior of the system); simplicity (the simpler the

model, the better it is, other things being equal).

 Depending on the problem statement, different models

can be chosen. Explicit functional dependencies of the form are

often used:

),,...,,,...,(2121  mpxxxfy  , (2.2)

 where: f – some function called the regression function;

pxxx ,..., 21 – independent variables (factors); m ,..., 21

– dependence parameters;  – random component. The latter is

introduced into the model when the data show noticeable

variability of a random nature. It is very often assumed that 

enters model (2.2) additively, then it takes the form:

  ),...,,,...,(2121 mpxxxfy (2.3)

Relations (2.2), (2.3) are called regression models.

 For independent factors pxxx ,..., 21 , the researcher

chooses certain values, and experimentally obtains the

corresponding values y . Then (2.3) passes into a system of

relations from which the parameters
m ,..., 21

 are

determined. Due to the presence of a random component, the

 60

m ,..., 21
 parameters can only be estimated (and not precisely

determined). In this case, estimates mbbb ,..., 21 of the

corresponding parameters are obtained, and instead of model

(2.3) in reality, an approximation ŷ to it is operated:

),...,,,...,(ˆ
2121 mp bbbxxxfy  .

If the function f is a polynomial, then mbbb ,..., 21 are called

regression coefficients, and the function takes the form:

 ...ˆ
,

0  
ji

jiij

i

ii xxbxbby (2.4)

2.2. Mathematical planning of an experiment

 Solving problems using mathematical methods is

carried out by formulating the problem, choosing a research

method, a mathematical model and analyzing the result

obtained. The mathematical formulation of the problem is

presented in the form of numbers, geometric shapes, functions,

systems of equations, etc.

 The main stages of mathematical planning are as

follows: setting the problem, defining the object and purpose of

the research, studying objects, etc.; choosing the type of

mathematical model (often several models are built and the

best one is chosen); describing the transformation of input

signals into output characteristics of the object (for example,

using algebraic dependencies); studying the quality of the

developed models [96].

 After selecting the type of model, i.e. the type of

dependence of y on x and writing the corresponding equation,

in the area of the factor space allocated for research, an

 61

experiment is planned. Then, experiments are carried out to

estimate the numerical values of the constants (coefficients) of

this equation. Since the polynomial (2.4) has Сd
k+d coefficients

that need to be determined, the experiment plan























kNNN

k

k

xxx

xxx

xxx

D

21

22212

12111

must contain at least Сl
k+d different experimental points Xu =

(х1u, х2u, ..., хku), u = 1,2,...N.

 2.2.1. Determination of regression coefficients by the

least squares method. According to the results of the

experiment on the object of study, a mathematical model of a

certain form is obtained. In particular, it can be a regression

model with a regression function in the form of a polynomial

of the appropriate degree - the so-called polynomial regression

model. The quality of the regression model's approximation to

the real object depends not only on the experimental data, but

also on the method of processing the results used to build the

model. For this purpose, the least squares method (LSM) is

often chosen. In this case, it is assumed that n experiments are

performed, in each of which the vector of independent factors

x = (x1,…xp) is given certain values. As a result, some values

of the dependent variable y are obtained. Provided that

xi = (xi
1,…, xi

p) is a set of values of the dependent variables that

were given to them in the i-th experiment, then yi are the

corresponding values of the dependent variable (i = 1,2,…, n).

To estimate the parameter vector  = (1,…, m), we choose

 62

such a vector b = (b1,…, bm) for which the sum S() (2.5) takes

on a minimum value by   Rm:

 









n

i

ixf
i

yS
1

2
);()( (2.5)

where: Rm – m-dimensional Euclidean space.

 If the regression function f is differentiable with respect

to the parameters (1,…,m), then the necessary condition for

the minimum of S() is that the equalities

 mj
S

j

,...,2,1,0
)(









. (2.6)

System (2.6) consists of equations, the number of which is

equal to the number of unknowns of the system – coefficients

mbbb ,...,, 21 , and is called a system of normal equations or a

normal system.

The solution to the problem of minimizing the function

S()is given below for a special case of model (2.6) provided

that p = 1, the vector of independent variables x is a scalar

variable, and m = 2. In this case, instead of the notations 1, 2,

the more common 0, 1 will be used for the dependence

parameters. It is also assumed that the function f is linear in the

parameters 0, 1, i.e. in the expression of the function f, the

variable x is present only in power 1. Then the regression

function f takes the form:

 f(x) = 0 + 1 x, (2.7)

and, thus, the following partial case of model (2.6) will be

investigated:

 y = 0 + 1 x + , (2.8)

 63

where: x and y – respectively, independent and dependent

variables, 0, 1 – model parameters,  – random component of

the model

Equation (2.8) is called simple linear regression.

To estimate the parameters 0, 1 from experimental

data, it is assumed that the independent variable x in the

experiments takes the values x1,…, xn, and the dependent

variable y – respectively, y1,…, yn. In this case, the problem of

minimizing the function S() takes the form:

 S ()= S(0, 1) =  



n

i
ixiy

1

2
)(10   min, (2.9)

where the minimum is taken for all values of 0, 1 for fixed

x1,…, xn and y1,…, yn. If the solution to problem (2.9) is

denoted by (b0, b1), and the corresponding estimate of the

regression function (2.7) is ŷ, then

 ŷ = ŷ(x) = b0 + b1 x (2.10).

Fig. 2.4 schematically depicts the regression line (2.10) and a

set of experimental points (xi, yi), as well as vertical segments

(deviations) connecting the indicated points and the line. These

deviations are measured by the differences of the ordinates

corresponding to the experimental points and the points of the

approximating line for the values x = x1 ,…, xn, that is, by the

algebraic values of the vertical segments shown in Fig. 2.4. In

this case, the sum of the squares of the lengths of such

segments will be the smallest possible. The value 1 is the

slope, and 0 is the free member of the line (the segment on

the ordinate axis at x = 0), and b1, b0 are their estimates from

 64

the experimental data. They are, respectively, the slope and the

free member of the equation of the line (2.10).

 Fig. 2.4. Regression line with vertical deviations

To solve problem (2.9), calculate the partial derivatives

with respect to 0, 1 of the function S = S(0, 1), which

have the following form:

  S / 0 = - 2 


n

i 1
(yi – 0 – 1 xi),

  S / 1 = - 2 


n

i
ix

1
(yi – 0 – 1 xi).

By equating the found derivatives to zero and performing

appropriate simplifications, we obtain a system of two

equations with unknown parameters 0, 1:

 0 n + 1  xi =  yi,

 0 xi + 1  xi
2 =  xi yi, (2.11)

In equations (2.11), to simplify the notation, the summation

indices are omitted (here and in similar situations, the sign 

means summation over all possible values of the index, in this

case from 1 to n). This system is a partial case of the normal

equations (2.6). The solution of the normal system (2.11) is the

 Line

 65

solution to the minimization problem (2.9). The system of

equations (2.11) is always consistent, regardless of whether its

determinant is zero or not. The equality of zero of the specified

determinant can occur only in the case when all observations

are made at only one value of x. In this case, the specified

system has many solutions, each of which can be found from

the equation:

 0 n + 1n x =  yi, (2.12)

Provided that the main determinant of the system of

equations (2.11) is not equal to zero, the system has a unique

solution, for which the following notation is introduced:

Sx y = (xi – x)(yi – y), Sx x = (xi – x)2, Sy y = (yi – y)2,

where summation indices are omitted.

 In the case where y = (y1+…+ yn)/n), та

x = (x1+…+ xn)/n are the arithmetic mean values of the

independent and dependent variables, the solution of system

(2.11) takes the form:

 b1 = Sx y / Sx x , (2.13)

 b0 = xby 1 . (2.14)

Thus, in the case of simple linear regression, the

relationship model between the objective function y and the

independent variable x is given by equality (2.10), in which the

coefficients b0, b1 are determined by equations (2.13), (2.14).

 Provided that certain probability assumptions about the

nature of the sample data x1,…, xn and y1,…, yn are met,

then the model (2.10) also has the corresponding properties of

a probabilistic nature. This makes it possible to assess the

quality of the constructed model, find confidence intervals for

 66

its values, and perform forecasting using regression analysis

and planning of experiments.

 2.2.2. Model adequacy checking. After determining the

coefficients of the developed mathematical model (2.10), the

hypothesis of the adequacy of the regression equation is tested,

i.e., the possibility of using the obtained equation for further

research is determined, or the need to build another model is

determined. The procedures for this test are conventionally

divided into analytical and graphical methods. For analytical

testing of the adequacy of the model, the difference between

the experimental value and the response value predicted by the

regression equation at some points of the factor space, which

can be selected from the points of the plan (for unsaturated

plans), or from additional control points, is studied. Control

points are usually chosen either in the area of greatest interest,

or placed in such a way that observations in them can be used

to construct a polynomial of higher degree.

The implementation of the analytical method involves

making more than one observation at least at one of the points

{xj}. Provided that x1, x2,…, xn are observation points, and n >

1, they are all considered different.

The dependent variable y, up to the random additive

error , can be represented as a linear combination of factor

variables (independent variables, regressors) x0, x1,…, xp  1:

 y = 0 x0 + … +  p  1 xp  1 + , (2.15)

 where: 0,…, p1 – coefficients of the mathematical

model

 As a result, a sample of size n was made, which is a

set of experimentally obtained n sets of numbers of the form:

 67

(x і0,…,x і, p  1, yі), і = 1,2,…,n, where: xij is the value of the jth

regressor (j-th independent variable) at the i-th observation,

yі - is the corresponding value of the dependent variable y. The

error value  at the i-th observation is denoted by  і.

 To check the adequacy of a linear model, a fairly

common method is to compare estimates of error variances

obtained, on the one hand, using this model, and on the other

hand, independently. This is equivalent to testing some linear

hypothesis by calculating and analyzing the corresponding

Fisher's F-ratio.

 At the first stage, the experimental data were marked

with the letter xi for the i-th observation point (row vector) of

the independent variable, i.e. xі = (xі0, …, xі,p1), і = 1, 2,…, n.

Since this method requires the presence of several observations

for y at least at one of the points xі, it is assumed that this

requirement is met, i.e. among the points xi there are some that

are repeated. In this case, x1, x1,…, xm – are different

observation points, and at least in one of them the number of

observations is greater than 1. The specified F-statistic has the

following form:

2

2

2

1

S

S
F  (2.16)

 де:   ,ˆ
1

1

22

1 






m

i

iii yyn
pm

S

 
 





m

i

n

j

iij

i

yy
mn

S
1 1

22

2)(
1

 68

 1iy , ….

iniy , і = 1,…., m – the values of the

output variable observed at the point x = xi;

in - number of

experiments at the i-th point

 Provided that m > p, the relation of the form
2

2

2

1

S

S

(a variant from the set of F-relations) has a Fisher distribution

),(mnpmF  [33,97]. According to the general provisions,

the hypothesis of the adequacy of the model is not accepted at

the significance level  if the specified relation exceeds the

quantile of the level (1-) of the Fisher distribution. Otherwise,

the hypothesis is accepted. To check the adequacy of the model

by the described method, the software developed by us can be

used [33].

2.2.3. Full and fractional factor experiments. In

experimental studies, each of the different values that a

variable
iX takes is called a level of that variable. The number

of different levels of a factor
iX is denoted by

iS . An

experiment in which the levels of each factor are combined

with all levels of the other factors is called a full factor

experiment (FFE). A full factor experiment is written as:

kSSS  ...21
, since the number of different points or

different experiments is
kSSSN  ...211
. An experimental

plan is called an incomplete or fractional factor plan if the

number of different points is
kSSSN  ...211
. Provided that

in the response function

 69

  kXXXf ,...,, 21 (2.17)

the number of different values that a variable
iX),...,2,1(ki 

can take in all experiments is two, i.e.
iS =2. In other words, the

variable
iX in each experiment takes one of two possible values

(
1iX and

2iX), or varies at two levels. If
1iX 

2iX , then
2iX is

called the upper level of the factor
iX , and

1iX is called the

lower level. To simplify the equations, coded variables are

introduced:
i

ii
i

S

XX
x

0
 , ki ,...,2,1 ,

 where:
2

210 ii
i

XX
X


 ki ,...,2,1 ;

2

12 ii
i

XX
S


 ki ,...,2,1 .

The coded variable ix (ki ,...,2,1) in each experiment can

take the values 1 or -1, which are its upper and lower levels.

Without loss of generality, we can assume that expression

(2.17) with variables
kXXX ,...,, 21
 presented in coded variables

form has the following form:

  kxxxf ,...,, 21 (2.18)

In the case when in expression (2.17) the number of

independent variables 2k , then  21, xxf . All possible

combinations of levels of variable 1x і 2x in a full factor

experiment 22 are presented in Table 2.1

 70

Тable 2.1 – Matrix of plan FFE 22

Experim

ent

number

Matrix of independent

variables Research
option

Observation

х0 х1 х2 х1 х2

1 1 -1 -1 1 (1) Y1

2 1 1 -1 -1 а Y2

3 1 -1 1 -1 b Y3

4 1 1 1 1 аb Y4

In the table, the symbol (1) means that both factors are in the

lower level; a – х1 in the upper level; b – х21 in the upper level;

ab – both in the upper level. This is a full factor experiment 22.

Often the response function has the form:

 211222110 xxxx   (2.19)

A schematic representation of the FFE 22 is shown in Fig. 2.5.

Fig. 2.5 – A schematic representation of the FFE 22

 From Fig. 2.5 it is seen that the observations y1, y2, y3,

y4 are made at the vertices of the square. The coefficients of

equation (2.19) can be calculated by the method of least

squares.

 71

 The response function of FFE 23 has the form:

 321 ,, xxxf . All different combinations of variable levels

are presented in Table 2.2.

Таble 2.2 – Matrix of plan FFЕ 23

 Matrix of independent variables

Research

option
Observation

х0 х1 х2 х3
х1
х2

х1
х3

х2
х3

х1

х2

х3

 1 -1 -1 -1 1 1 1 -1 (1) y1

 1 1 -1 -1 -1 -1 1 1 A y2

 1 -1 1 -1 -1 1 -1 1 B y3

 1 1 1 -1 1 -1 -1 -1 ab y4

 1 -1 -1 1 1 -1 -1 1 C y5

 1 1 -1 1 -1 1 -1 -1 ac y6

 1 -1 1 1 -1 -1 1 -1 bc y7

 1 1 1 1 1 1 1 1 abc y8

The response function is calculated from the equation:

321123

3131

0 xxxxxx ji

ji

ij

i

ii   


 (2.20)

The coefficients (2.20) are determined by the least squares

method.

 In a full factor experiment k2 the number of

experiments is kN 2 . As the number of variables k

increases, the number of experiments N increases rapidly, so

for large values of k , the implementation of FFE k2 becomes

practically impossible. For FFE k2 experiments the response

function has the following form:

kkji

kji

ij

ki

ii xxxxxx 21...12

11

0   


 (2.21)

 72

With the growth of N there is an increase in the number of

interactions and their order in (2.21), but often in the specified

equation the effects of high-order interactions can be neglected,

or it is known a priori that some of them are absent. The

number of experiments to find estimates of the unknown

coefficients of such an equation can be significantly reduced.

This is achieved by using fractional factor experiments. If in

FFE k2 observations are carried out at all vertices of the

k -dimensional hypercube, then when using fractional plans -

only at some of them.

Below is an example of constructing a fractional

replica, in which the response function has the form:

 



31

0

i

ii x (2.22)

In this expression, the effects of pair and triple interactions are

absent 0123231312   .

 If FFE 23 is used to estimate the unknown coefficients,

then N =8. However, the number of experiments can be

reduced, since in (2.22) there are no interaction effects. For this

purpose, a plan is constructed, the matrix of which has the

form:

321 xxx





























111

111

111

111

D
 (2.23)



 матриця ПФЕ 22

 73

The matrix D is obtained from the matrix FFE 23 by deleting

individual rows from it: (1; -1; 1), (-1; 1; 1), (-1; -1; -1),

(1; 1; -1). The constructed fractional factor experiment (FFE)

design (2.23) is a half-replica of FFE 23. For its recording, the

notation is used: 23-1, where 2 is the number of levels; 3 is the

number of variables; N = 23-1 is the number of experiments.

The code designation of the half-replica: с; а; в; авс. As can be

seen from (2.23), the features of the design of the design are

that the variable х3 at the points of the design satisfies the so-

called generating relation::

 213 xxx  (2.24)

 Using this equation, it is easy to construct (2.23) – first the

FFE 22, and then the column vector х3, which corresponds to

(2.24).

2.3. Planning an experiment on composition–

property diagrams

2.3.1. Simplex grid plans. In chemical technology, in

particular in the technology of polymer composite materials,

most of the objects under study belong to the class of complex

experimental design systems, which are mixtures of q

different components. The variables ix),...,2,1(qi  of

such systems are the proportions (relative content) of the i-th

components of the mixture and satisfy the following condition

[96,113,114]:

 



qi

ix
1

1 ,)0(ix (2.25)

The locus of points satisfying condition (2.25) is a

(q-1)-dimensional regular simplex, which is a triangle for q=3,

 74

a tetrahedron for q=4, etc. Each point of such a simplex

corresponds to a mixture of a certain composition, and,

conversely, any combination of the relative contents of q

components corresponds to a specific point of the simplex.

Since when planning experiments and constructing

composition–property diagrams one has to operate with the

factor space in the form of simplexes, it is advisable to switch

from ordinary Cartesian coordinates to a special simplex

system, in which the relative contents of each component are

plotted along the corresponding faces of the simplex [96,98].

At the vertices of the simplex each ix = 1, and further - are

determined by the lines (or surfaces) of the level parallel to the

opposite side (or face) of the simplex. So, for example, for a

three-component mixture, the simplex is an equilateral triangle

х1, х2, х3 (Fig. 2.6).

Рис. 2.6 – Симплексна система координат

The value of the variable х1 at the vertex х1 is equal to one, and

on the side х2х3 it is zero.

 The problem of constructing a mathematical model of

composition–property can be solved by writing the desired

function as a polynomial of degree n in canonical form:

х1

х2

х3

 75

     
   





















n

m qiii

s

i

s

i

s

is

qi

n

m qji

m

jiji

m

ijii

m

m

m
xxxxxxxxy

3 ...11 2 1

2)(

21

2

2

1

1
...ˆ 

(2.26)

 where: nsss m  ...21 .

Polynomials of this form (so-called reduced polynomials) are

obtained from ordinary polynomials of the corresponding

degree taking into account the relation (2.25) and contain
n

nqC 1 coefficients. For example, a polynomial of the second

degree, which in the general case is described by the equation:
2

133

2

122

2

1113223311321123322110
ˆ xbxbxbxxbxxbxxbxbxbxbby 

 taking into account the ratio 1321  xxx will take the

form:

322331132112332211

ˆ xxxxxxxxxy   .

 To estimate the coefficients of the reduced polynomial

(2.26), plans were proposed that provide a uniform distribution

of experimental points over a (q-1)-dimensional simplex. The

points of such plans are the nodes of {q, n}-simplex grids, in

which (n+1) equally spaced levels in the interval from 0 to 1






  1...,

,
2

,
1,0

nn
xi

 are used for each factor (component) and

various combinations of them are taken. Thus, the number of

such combinations
n

nqC 1 is equal to the number of

coefficients in the reduced polynomial (2.26). The set of points

 
quuu xxx ,...,, 21 , n

nqCNu 1,...,2,1  , where

 76

1...,
,

2
,

1,0
nn

xiu  , 



qi

iux
1

1 forms a saturated

simplex-grid {q, n}- plan.

 Examples of {q, n}-grids are shown in Fig. 2.7.

Fig. 2.7 – Types of {q, n}-grids

Each grid corresponds to a plan matrix:



















100

010

001

D - for linear grid;





























2/12/10

2/102/1

02/12/1

100

010

001

D
 - for quadratic grid;

quadratic

ична

cubic

linear

incomplete

cubic

 77































3/13/13/1

2/12/10

2/102/1

02/12/1

100

010

001

D
 - for incomplete cubic grid;









































3/13/13/1

3/23/10

3/13/20

3/203/1

3/103/2

03/23/1

03/13/2

100

010

001

D

 - for cubic grid.

 2.3.1.1. Planning with a preliminary transformation of the

simplex sub-area. When solving q-component mixed

problems, it is often necessary to investigate only a

(q-1)-dimensional simplex subdomain of the full

(q-1)-dimensional domain. The subdomain can be given by

restrictions on the domain of change of all components, for

example,
ii qx  (i = 1, 2, …, q). In this case, direct

application of the methods described above is impossible, since

the condition is violated, therefore, a transformation of the

subdomain is first performed by transition to a new coordinate

system  qzzz ,...,, 21 (Fig. 2.8) [96,113,114].

 78

 Fig. 2.8 – Transformation of a simplex sub-area

For the transformed sub-area, the equalities hold:

 10  iz , i = 1, 2, …, q; 1...)()(

2

)(

1  u

q

uu zzz , (2.27)

 where: u – any point of the sub-area.

 The transformation dependence between the coordinate

systems  
qxxx ,...,, 21 and  qzzz ,...,, 21 , which corresponds to

condition (2.27), is given by the following matrix equation

X = AZ, in expanded form:

)(

)(

2

)(

1

)()2()1(

)(

2

)2(

2

)1(

2

)(

1

)2(

1

)1(

1

)(

)(

2

)(

1

...............

...

...

...
u

q

u

u

q

qqq

q

q

u

q

u

u

z

z

z

xxx

xxx

xxx

x

x

x

 (2.28)

The elements of the matrix A are: – coordinates of the vertices

of the simplex
)(u

ix and
)(u

iz – initial and new coordinates of

the u-th transformed point. All plans that were used for the

complete simplex can be constructed with respect to the new

variables z, but the implementation of the experiment in such

conditional plans is impossible. To conduct research, it is

х3

х2

х1

z1

z2

z3

z3

z2

z1

 79

necessary to represent the experimental compositions of the

systems in x-coordinates, that is, to make a transition according

to the conditions (2.28).

2.3.2. Simplex-centroid plans. In simplex-lattice plans,

experimental points are located mainly on the periphery of the

simplex. As already noted, for a three-component composition,

the simplex is an equilateral triangle, each vertex of which is an

independent component of the mixture; the points contained on

the edges of the triangle correspond to binary systems of pairs

of ingredients, the points inside the simplex are the

composition of the mixture from all three components. For a

four-component system, the region of admissible variables has

the form of a tetrahedron. Its faces correspond to simplices of

ternary mixtures of three components, and the points inside are

a mixture of four ingredients. In simplex-lattice plans, for

constructing models of degree n, the experimental points are

located in the simplex symmetrically, using for each

component),1(qixi  q+1 equidistant levels ranging from

0 to 1: 0ix ; n/1 ; n/2 ;…; 1/ nn . All possible

combinations of these levels are plans or simplex lattices. Such

plans are considered fully saturated, i.e. the number of

experiments in them is equal to the number of unknown

coefficients of the corresponding model. In simplex-lattice

plans, the experimental points are usually located on the

periphery of the simplex. Some of these plans, for example,

first- and second-order grids, do not contain any experimental

points inside the studied region, i.e. those that correspond to

the composition of all components. The polynomial used,

 80

adequately describing the results of experiments on the faces of

the simplex, can give significant deviations for the central

regions that correspond to mixtures of all q components of the

studied system. Based on this, another arrangement of

experimental points was proposed - simplex-centroid

experimental design [96]. In simplex-lattice plans, the

experiments are implemented in N = 2q – 1 experimental

points, q of which are points containing one non-zero

component; С2
q - points containing two non-zero components

(binary mixtures); С3
q – points containing three non-zero

components (ternary mixtures), etc., and one point containing

all the components of the mixture. The simplex-centroid plan

contains points with coordinates (1,0,...,0); (1/2,1/2,0...,0); ...;

(1/q, 1/q... 1/q), as well as all points that can be obtained by

permuting their coordinates. Thus, the experimental points are

placed at the vertices of the simplex, the midpoints of the sides,

the centers of faces of different dimensions, and one point is in

the center of the simplex.

Unlike simplex-grid plans, in which for a given q there

is a set of {q, n}-grids (n = 1,2,...), there is a unique simplex-

centroid plan for a fixed q. The approximating polynomial can

be chosen as follows:

 
 


n

m

qqkjiijk

qi

n

qji

jiijii xxxxxxxxxy
3

21...12

1 1

.......ˆ 

(2.29)

It contains as many coefficients as there are points used in the

simplex-centroid plan, i.e. these coefficients are uniquely

determined by the responses at 2q -1 points of such a plan..

 81

2.4. Optimization of the composition of

multicomponent systems

A significant number of experimental problems in

chemistry and chemical technology are formulated as problems

of determining the optimal process conditions, the optimal

composition of the composition, etc. The research process is

usually divided into separate stages. The information obtained

after each stage determines the further strategy of the

experiment. Thus, the possibility of optimal control of the

experiment arises.

At the first stage of solving the optimization problem, it

is necessary to clearly formulate it, as well as to make

transformations and simplifications in order to bring it to a

form convenient for further solution. The optimization problem

of processes characterized by several responses is usually

reduced to a single-criterion optimization problem with

constraints in the form of equality or inequality. Depending on

the form of the response surface and the nature of the

constraints, it is proposed to use uncertain Lagrange

multipliers, linear and nonlinear programming, ridge analysis,

etc. for optimization [99]. The disadvantages of these methods

of solving the optimization problem include the complexity of

the calculation. In particular, provided that the response surface

is described by second-order polynomials, solving the problem

for a conditional extremum using uncertain Lagrange

multipliers leads to the need to solve a system of nonlinear

equations.

In the general case, the multi-criteria optimization

problem is formulated as follows [100]:

 82

       xfxfxf k
x


 ...,,,min 21 , Sx


 (2.30)

where: RRf n

i : − are k (k2) of target functions

In this case, the target functions that are investigated for the

maximum are transformed into functions that are investigated

for the minimum:

    yy maxmin  (2.31)

The solution vector  Tnxxxx ...,,, 21


 belongs to the non-

empty domain of definition S.

The solution of a multi-criteria optimization problem

consists in finding a vector of variables that will satisfy the

imposed constraints and optimize a vector function whose

elements correspond to the objective functions. They are a

mathematical description of the satisfaction criterion and, as a

rule, can conflict with each other. Thus, the optimization

problem is to find a solution at which the values of the

objective functions would be acceptable for the formulation of

the problem..

In the process of solving multi-criteria problems, a

number of problems are solved [100]:

- the problem of normalization - individual criteria, as a

rule, have different scales and units of measurement, which

makes it impossible to directly compare them;

- the problem of taking into account the priority of

criteria - they often have different significance, which is why it

is necessary to find a mathematical definition of priority and

the degree of its influence on solving the problem;

 83

- the problem of determining the compromise region -

arises when solving multi-dimensional nonlinear problems.

All decision-making problems are complex and multi-

objective, since when choosing the best option, many different

requirements must be taken into account, which may conflict

with each other. Based on this, a multi-objective problem is

often reduced to a single-objective problem, that is, one is

formulated that includes one criterion, and one or more

additional constraints are added to the original system of

constraints.

There is no universal method for solving multi-criteria

mathematical programming problems. The choice and correct

use of any of the known methods is left to the decision-maker.

The most common heuristic method for solving a particular

multi-criteria problem is to reduce it to the solution of some

scalar (single-criteria) problem, the objective function of which

is most often a certain combination of existing criteria

mfff ...,,, 21
. This method is called scalarization of a multi-

criteria problem. Depending on the method of combining

several existing criteria into a single scalar one, one or another

type of scalarization is obtained, which is chosen based on the

essence of the problem being solved and some additional

information about the advantages.

The simplest method of scalarization is based on the use

of the so-called linear convolution of criteria:

    



m

i

ii xfxF
1

min

 84

 



m

i

ii mi
1

1,...,,1,0  (2.32)

In practice, the scalarization process begins with the selection

of linear convolution coefficients, i.e. numbers mii ...,,1,  .

These numbers are interpreted as “importance coefficients” of

the corresponding criteria, the more important of which is

assigned a larger coefficient in the linear convolution of

criteria, and the less important one is assigned a lower one.

This method is convenient to use; it allows you to preserve the

linearity of the output functions, i.e. in the case when the initial

criteria are linear, the final criterion will also be linear.

Models describing a single-criteria problem are much

simpler and can be solved by one of the known methods and

used to optimize multicomponent systems. In order to

determine the optimal composition of the mixture, it is

necessary to solve the so-called conditional optimization

problem, which is associated with optimization under variable

constraints. These constraints reduce the size of the region in

which the optimum is located. The optimization process

becomes more complicated, since in the presence of constraints

it is impossible to use the applied optimality conditions. In this

case, even the basic conditions according to which the

optimum should be achieved at a stationary point may be

violated.

To move from a conditional optimization problem with

constraints to an unconstrained problem, there are a number of

methods: the method of indefinite Lagrange multipliers, the

method of penalty functions, the method of barrier functions,

etc. If the method of penalty functions is used, it is necessary

 85

that it “penalizes” the function Z for violating the constraints

(i.e., increases its value). In this case, the minimum of the

function Z will be inside the constraint region. There may be

several penalty functions  xP that satisfy this condition. The

minimization problem consists in minimizing the function

 xfZ  under the constraints   0xc j
, mj ...,,2,1 , then

the function  xP takes the form:

  
 




m

j j xc
rxP

1

1
, (2.33)

where: r – quite a small value

By applying one of the above methods, we obtain an

unconditional optimization problem, which is formulated as

follows: find the minimum of the function f(x), where
nRx

in the absence of restrictions on x, and f(x) is a scalar

objective function, continuously differentiable [100,101].

When solving these problems, the researcher must take

into account the following factors:

- the nature of the objective function of the problem

being solved - single or multi-extreme;

- the possibility of obtaining information about the

derivatives of the objective function during the optimization

process;

- the presence of different approaches to organizing an

iterative procedure for finding the optimum (methods based on

the iterative movement of variables in a direction determined

by one or another method).

 86

Several methods can be used to perform unconditional

optimization: direct search, first-order, second-order (Newton

methods), random search, gradient, etc. In direct search

methods for the minimum of the objective function (or zero-

order methods), information is used only about the value of the

function. Many of them do not have sufficient theoretical

justification and are built on the basis of heuristic

considerations. Random search methods implement an iterative

process of moving optimization variables in space using

random directions. The advantage of these methods is a large

range of possible directions of movement. The gradient method

with step splitting is most often used, since it is quite simple

and is characterized by good convergence.

 Thus, to optimize the content of ingredients in a

multicomponent mixture, it is necessary to conduct multi-

criteria optimization of the system taking into account several

conflicting objective functions. To do this, the multi-criteria

problem is reduced to a single-criteria problem, the conditional

optimization problem is transformed into an unconditional

optimization problem and it is solved by one of the specified

methods.

Today, one of the most widely used methods for solving

the problem of optimizing processes with a large number of

responses is the general optimization criterion proposed by

Harrington - the so-called generalized desirability function

D [99]. To find it, the found response values are converted into

a dimensionless desirability scale d. The construction of a

desirability scale, which establishes the relationship between

the response value y and the corresponding value d (partial

 87

desirability function), is fundamentally subjective, that is, one

that reflects the researcher's attitude to individual responses.

It is convenient to create a desirability scale using the

method of quantitative assessments with an interval of

desirability values from zero to one, but other options are also

possible. The value d = 0 (or D = 0) corresponds to an

absolutely unsuitable response value, and d = 1 (D = 1) is the

best response value, and its further improvement is either

impossible or of no interest. Intermediate desirability values

and the numerical assessments corresponding to them are given

in Table 2.3.

Таble 2.3 – Base estimations of the desirability scale

Quantitative assessment on a

desirability scale

Desirability of response

values

0,80 ÷ 1,00 very good

0,63 ÷ 0,80 good

0,37 ÷ 0,63 satisfactorily

0,20 ÷ 0,37 bad

0,00 ÷ 0,20 very bad

This choice of numerical estimates is explained by the

convenience of calculations, since d = 0.63 ≈ 1 – 1/e and

d = 0.37 ≈ 1/e. The d scale constructed in accordance with

Table 2.3 is a dimensionless scale, with the help of which any

response can be transformed in such a way that it is interpreted

in terms of usefulness or desirability for any specific

application.

 The simplest type of transformation is one in which

there is an upper and/or lower specification limit, and these

limits are unique and do not allow changes in the quality

criterion. Outside these limits, the value d = 0.0, and between

 88

them d = 1. The partial desirability function under a one-sided

constraint has the following form:










min

min

,1

,0

yy

yy
d (2.34)

Similarly, a partial desirability function is obtained if the

specification imposes a constraint from above, and under a

two-sided constraint, the desirability function takes the form:










maxmin

maxmin

,1

,0

yyy

yyтаyy
d (2.35)

 It is always desirable that the response value is not only

between the specification limits, but also at a certain distance

from them in order to prevent possible random fluctuations. In

addition, it is sometimes difficult to determine the exact

limiting line between acceptable and unacceptable product

quality indicators. In the general case, the conversion of

y to d is carried out according to a more complex law. For a

two-sided restriction of the form ymin ≤ y ≤ ymax, the

conversion of the measured response y to the scale d is

performed using the expression:

   n
yd  exp (2.36)

where: n − positive number (0 < n < ∞), not necessarily an

integer;

 

minmax

minmax2

yy

yyy
y




 (2.37)

In this case, the exponent of the power n can be calculated by

assigning a value of d to some value of y (preferably in the

interval 0,6 < d < 0,9) using the formula:

 89

  
 y

d
n




ln

/1lnln
. (2.38)

 For one-sided constraints of the form y ≤ ymax or

y ≥ ymin, more convenient form of converting y to d is

another exponential dependence:

)]exp(exp[yd  (2.39)

 where: y – dimensionless value of the output variable, which

is determined from the expression

 y = b0 + b1y (2.40)

The coefficients b0 and b1 can be calculated by specifying

the corresponding desirability values d for two values of the

property y, preferably in the interval 0,2 < d < 0,8. In

practice, one-sided specification is most common.

Having several responses converted into a scale d, it is

possible to combine from these different d some generalized

desirability index D by means of arithmetic operations. In this

case, if one of the responses is absolutely unsatisfactory, the

generalized desirability function D should be equal to zero

regardless of the levels of the different responses. A

mathematical expression that meets these requirements is the

geometric mean of the partial desirability functions, i.e.:

 k
kdddD 21 (2.41)

 where: k – number of optimization criteria

Provided that some one di = 0, then the corresponding D is

also zero. Moreover, the generalized desirability function is

most strongly influenced by the smallest values of di. At the

same time, D = 1 only when all partial desirabilities di = 1

 90

(i = 1, 2, ... k). It is also important that expression (2.41) allows

us to apply to partial desirabilities and the generalized indicator

a single method of specifying the basic desirability scale

estimates given in Table 2.3, if di = d1 = d2 =... dk = 0,37, then

D = 0.37, etc. With the generalized desirability function, all

computational operations can be performed, as with any system

response, and D can be used as an optimization criterion in

the study and optimization of the process. It should be borne in

mind that the set of possible values of D is limited to D ≤ 1.

The most effective application of the generalized desirability

function turned out to be in the development of recipes in the

technology of obtaining new polymer materials.

2.5. Software for planning experiments, developing

mathematical models, and optimizing the composition of

multicomponent systems

2.5.1. Software for constructing an experimental design

for ternary mixture systems. To build a work plan for

conducting research on various three-component mixture

systems of all possible ratios of components, we have

developed software (software) [102,103]. The program allows

you to solve one of the important problems that may arise

during planning, namely, the uneven content of the mixture

components (the concentration of one or two of them is less

than the content of the others by an order of magnitude or

more). The software was created in the Builder environment in

the C++ language [104-106].

 In order to optimize the composition of compositions

that are mixtures of q different components, the simplex-grid

 91

method is used, since it is the most suitable for studying

mixtures. The variables ix),...,2,1(qi  of such systems

are the proportions (relative to the content) of the i-th

components of the mixture and satisfy the condition (2.25).

 When developing an experimental design, the factor

space is operated in the form of simplexes, therefore, the

created software provides for a transition from ordinary

Cartesian coordinates to a special simplex system. The points

that determine the relative content of each component are laid

out along the corresponding faces of the simplex. At the

vertices of the simplex, each ix = 1, and then they are

determined by the lines (or surfaces) of the level parallel to the

opposite side (or face) of the simplex. For a three-component

mixture on the plane, the simplex has the form of a triangle

with vertices х1х2х3 (Fig. 2.9).

Fig. 2.9 – Simplex area for experiment planning

 92

 Each vertex of the simplex is an independent component of the

mixture; the points forming the edges of the triangle

correspond to binary systems of pairs of ingredients, the points

in the middle of the simplex are a mixture of a mixture of all

three components. The value of the content of the first

component (х1) at the vertex х1is equal to one, and on the

opposite side х2х3 is zero.

 In q-component mixtures, the content of ingredients can vary

from 0 to 1 or within this interval, which is determined by the

requirements for the properties of the created compositions. In

this case, it is necessary to investigate only the (q-1)-

dimensional simplex subdomain of the full (q-1)-

dimensional area. The subdomain is given by restrictions on

the content of all components. The developed program allows

you to automatically obtain a factor space for conducting an

experiment for all possible combinations of the composition of

the compositions, including those with uneven content of

components. A limited area of irregular shape, which is a factor

space for conducting an experiment, is obtained by introducing

restrictions on the concentration of ingredients. For this

purpose, the program provides an option to enter restrictions on

the content of the components of the mixture (Fig. 2.10). The

limited region of irregular shape, i.e. the factor space of the

experiment for compositions with comparable ingredient

contents, is shown in Fig. 2.11.

 93

Fig. 2.10 – Section of the program working form with restrictions on

the content of mixture components

Fig. 2.11 – Factor space for conducting an experiment

 94

Planning experiments using the simplex-lattice method

is carried out in a subregion “similar” to the original simplex,

i.e. in the polygon it is necessary to select a triangular

subregion. This triangle, firstly, must lie completely inside the

“cut out” area and, secondly, most fully cover it. The program

allows you to construct a region in the form of a triangle inside

the found subregion. The user can interactively select a

triangular region inside the found polygon, for which he must

first click the “Subregion” button, and an enlarged subregion

for conducting the experiment appears on the monitor screen

(Fig. 2.12).

Fig. 2.12 – The enlarged subregion obtained under the given

constraints

 The triangular subregion can be selected in various

ways (Fig. 2.13 a, b).

 95

 а) b)

Fig. 2.13 – Different options for choosing a triangular subregion

The determination of the vertex points of the triangle can be

carried out in two modes: by selecting the option "subregion

vertex point selection mode", or by canceling it. Fig. 2.14 (a, b)

shows the subregions with the option canceled.

 а) b)

Fig. 2.14 – Different options for selecting a triangular

subregion with the "Subregion vertex selection mode" option

unchecked

The researcher selects the most appropriate area of the

triangular shape based on his empirical experience. The next

option is to select a subarea that most fully covers the possible

 96

combinations of the ratios of the components in the

composition. Then, by clicking the “Get values” button, the

user sees on the screen that the selected triangle is inside the

complete simplex, and in the window on the right - the

coordinates of its vertices in the simplex system (Fig. 2.15).

 Fig. 2.15 – Constructed subdomain inside the full simplex

The properties of the system can be described by

different models taking into account specific requirements for

them - first of all, this is adequacy and simplicity. The created

software provides the possibility of using three types of

models: quadratic, incomplete cubic and cubic. The calculation

of the coefficients of the equations is carried out according to

the matrix relation X = AZ, where the matrix elements: A -

coordinates of the vertices of the simplex, X and Z - matrices of

 97

plans: for the desired working and for the complete simplex,

respectively.

By default, the program calculates the dependence of

the output variables on the content of the mixture components

according to the incomplete cubic model. By clicking the

"Calculation" button, the user receives an experiment plan on

the screen (Fig. 2.16, table "Result").

 Fig. 2.16 – Plan of experiment for the incomplete cubic model

For convenience, the experiment plan can be saved to a

file. The created file stores the experiment plan (Fig. 2.17).

 98

Fig. 2.17 – The result of the program - a saved experiment plan

As already mentioned, the program allows you to build

experimental plans also using quadratic and cubic models. To

do this, you need to return to the form with calculations (Fig.

2.16) and select the appropriate options on the form (Fig. 2.18,

2.19).

Fig. 2.18 – Plan of experiment for the quadratic model

 99

 Fig. 2.19 – Plan of experiment for the cubic model

Experiment plans for these models can also be written to a files

(Fig. 2.20).

Fig. 2.20 – The result of the program - saved experiment

plans

2.5.1.1. Experimental plan for ternary systems with

incommensurable component contents. The developed software

makes it possible to plan an experiment, in particular, for three-

component compositions, in which one of the components is

 100

added in a much smaller amount compared to the other two

ingredients (the difference can be 50÷1000 times). Such a task

arises, in particular, when planning experimental studies on the

influence of substances in the nanoscale on the properties of

polymer compositions. When interactively planning an

experiment in systems of such a composition, the factor space

has a very small size (contracted into a strip or point), which

makes it necessary to make an uneven increase in the planning

area with the obligatory preservation of the correspondence of

mathematical coordinates. The created program allows you to

perform this operation [103].

 The user begins work by entering restrictions on the

content of the mixture components and clicks the “apply level

lines” button (Fig. 2.21)

Fig. 2.21 – Section of the program working form with restrictions on

the content of mixture components

The factor space for conducting the experiment appears on the

monitor in the form of a strip (Fig. 2.22).

 101

 Fig. 2.22 – Factor space contracted into a strip

Further, when clicking the "subarea" button, in the

previous version of the program, which did not provide for

uneven enlargement of the subarea, the user would receive the

following result (Fig. 2.23).

Fig. 2.23 – Increased factor space compared to the previous version

of the program

 102

In this case, interactive planning is impossible due to the small

size of the factor space.

The uneven increase in the planning area provided for

in the developed program is achieved automatically by the

algorithm built into it by introducing a coefficient that changes

the size of the subarea in a certain direction to the appropriate

size while maintaining the correspondence of mathematical

coordinates (Fig. 2.24).

Fig. 2.24 – Unevenly enlarged factor space

The user interactively selects three points within the

subdomain and the factor space of the experiment appears on

the monitor screen in the form of a triangle (Fig. 2.25).

 103

 Fig. 2.25 – Experiment planning area

By clicking the “Get values” button, the researcher

receives on the screen the area of the experiment, which is

located in the complete simplex, on which the triangle is not

visually visible (Fig. 2.26).

 Fig. 2.26 – The experimental area is located in the full simplex

 104

 The program by default outputs a plan matrix for an

incomplete cubic model (Fig. 2.27).

Fig. 2.27 – Plan of experiment for an incomplete cubic model has

been constructed

The experiment plan can be saved in a file (Fig. 2.28).

Fig. 2.28 – Saved experiment plan

Experiment plans for quadratic and cubic models are

constructed similarly (Fig. 2.29, 2.30) and saved in files (Fig.

2.31).

 105

Fig. 2.29 – Plan of experiment for a quadratic model

Fig. 2.30 – Plan of experiment for a cubic model

 106

 а)

 b)

Fig. 2.31 – Saved plans of experiments for quadratic (a)

and cubic (b) models

Thus, the developed software has a user-friendly

interface and does not require additional knowledge of

computer technology. The software can be used for automated

interactive planning of an experiment in the process of

conducting scientific research on mixture systems (polymers

modified with inorganic and organic additives, nanofilled

polymer dispersions, fiberglass, polymer concretes, etc.) in

research laboratories and at enterprises of various industries.

The program allows you to plan an experiment for all possible

ratios of ingredients in three-component compositions,

including solving one of the important problems that may arise

during planning, namely: the uneven content of mixture

components, in which the concentration of one or two of them

is less than the number of others by at least an order of

magnitude.

Thus, in C++ software has been developed that allows

interactively building an experiment plan for various ternary

mixtures using three types of models of dependence of the

 107

output parameters on the content of the components -

incomplete cubic, cubic and quadratic. The program allows

solving the problem of experiment planning for compositions

in which the content of one or two components differs from the

others by hundreds and thousands of times. This is achieved

thanks to the algorithm built into the software, which ensures

an uneven increase in the area of the factor space with the

obligatory preservation of the correspondence of mathematical

coordinates.

2.5.2. Software for constructing an experimental design

for four-component mixture systems. In order to automate the

process of experimental research on optimizing the

composition of multicomponent mixtures, we developed

software for building a work plan of experiments for all

combinations of ingredient ratios in four-component systems

[31]. The program was created in the Delphi environment [107-

109]. The software was developed on the basis of the simplex-

lattice method, while the ratio of ingredients in the

compositions satisfies condition (2.25), which determines the

region of admissible variables, the so-called simplexes [96]. As

already noted, for a four-component system it has the form of a

tetrahedron, the faces of which correspond to the simplexes of

three-component mixtures, and the points inside are four-

component ones. To build models in simplex-lattice plans,

experimental points are symmetrically located mainly on the

periphery of the simplex. To take into account the results of

experiments inside the simplex when developing the software,

we used simplex-centroid plans, which contain points with

coordinates:)0;...;0;1(;)0;...;0;2/1;2/1(; …;)/1;...;/1;/1(qqq ,

 108

as well as all points that can be obtained by permuting these

coordinates [150]. In this case, the experimental points are

located at the vertices of the simplex, the midpoints of the

sides, the centers of the faces of different dimensions, one point

is in the center of the simplex. In this case, from the 12 q

experimental data, q points have one non-zero component; 2

qC ;

3

qC ; 4

qC - two, three and four non-zero ones, respectively,

and one point contains all the components.

To construct the experimental plan, we took a

conditional mixture of two polymers (A, B) and two modifying

additives (c, d), the relative concentrations of which were x1,

x2, x3, x4 , respectively. Two-sided restrictions were imposed on

the content of individual ingredients of the system:

 qibxa iii ,1,10  (2.45)

 where: ii ba ,  upper and lower limits of each

component, which must not be equal to each other.

The development of plan of experiment that meets some

optimality criterion begins with determining the coordinates of

candidate points, namely: polygon vertices, edge midpoints,

face centers, and the common centroid. For this purpose, the

software uses the McLean–Anderson method [99], according to

which all possible combinations of the lower and upper levels

ia and ib are selected and for each component, skipping the

content of one of them. For the four-component mixture under

study, one of the options may be 421 ;;; bba  , while the total

number of combinations (at q=4) is 32. In the created software,

to select all possible combinations of ingredients in the

 109

mixture, the researcher performs the corresponding procedure:

procedure convert (a, b: vector1; var x1, x2, x3, x4: vector).

The input of this procedure is given by restrictions on the

content of each of the components of the mixture. They are

specified on the form, and the program reads the data recorded

in the Edit component. The variable a takes the values of the

lower levels, and the variable b takes the values of the upper

levels of the content for each ingredient of the mixture. The

output of the procedure is four one-dimensional arrays x1, x2,

x3, x4, the elements of which are the values of the coordinates

of the vertices of the polyhedron corresponding to the content

of the components of the mixture.

The resulting polyhedron has faces of the first and

second orders. Faces of the first order are edges that have two

identical coordinates, and faces of the second order are edges

that have one identical coordinate. The program performs the

procedure: procedure grani (x1, x2, x3, x4: vector; var ox1,

ox2, ox3, ox4: vector), during which the points are compared,

and those of them that have one identical coordinate form a

face. In this case, the vertices that are repeated are excluded. At

the output, we have four one-dimensional arrays ox1, ox2, ox3,

ox4, which are the coordinates of the centers of the selected

faces. The dimension of the resulting polyhedron is always q-1.

Further, among the obtained combinations, it is

necessary to select those for which the sum of the

concentrations is less than one, and add the content of the

component that was omitted. To do this, the procedure is

performed: procedure rebra (x1, x2, x3, x4: vector; var dx1,

dx2, dx3, dx4: vector), at the input of which the coordinates of

 110

the vertices of the polyhedron x1, x2, x3, x4 are given. During

the procedure, all points are compared with each other. Points

with two identical coordinates are searched for. These points

form the edges of the polyhedron. At the output of the

procedure, we have one-dimensional arrays dx1, dx2, dx3, dx4,

the elements of which correspond to the coordinates of the

centers of the edges.

 Variants with added components that satisfy conditions

(2.25) and (2.45) represent the vertices of the desired

polyhedron, which in the studied simplex forms an octagon.

The resulting polyhedron has faces of the first and second

orders: the first order is edges that have two identical

coordinates, and the second is one coinciding coordinate. In

this case, the vertices that are repeated are automatically

excluded. The dimension of the resulting polyhedron is q-1.

The next step is to select the r-dimensional faces, or

hyperfaces of the polyhedron, which are within 21  qr .

At 1r it be an edge, at 2r is a face, at 3r is a

hyperface. A face with dimension r is formed by a group of

vertices that have the same coordinates in the number 1 rq .

In the four-component system, a three-dimensional polyhedron

is formed. Its edges have vertices with two identical

coordinates (2114 ), and the faces have vertices with one

identical coordinate (1124 ). In this case, the maximum

number of vertices with the same coordinates 1 rq is

selected, because they form the r-dimensional face. The upper

limit of the total number of r-dimensional faces is calculated

by the formula:

 111

 




 
2

11

11 2
q

rq

rqrq

qC (2.46)

In each of the selected faces, the coordinates of the centers

(centroids) are determined as the average value of the

coordinates of the vertices that form the corresponding face.

When executing the procedure: procedure centr(x1, x2, x3, x4:

vector; var cx1, cx2, cx3, cx4: real) the values of the

coordinates of the candidate points for the plan are input to it.

Next, the coordinates of the common center (centroid) of the

polyhedron are calculated as the average value of the

coordinates of all vertices. The output is the coordinates of the

common center of the polyhedron cx1, cx2, cx3, cx4 (Fig.2.32).

Fig. 2.32 – Programmatic determination of the common center of a

polyhedron (centroid)

 As a result, 27 candidate points for the experimental

design are obtained.

 112

 As a response function that connects the initial

parameters with the factors that change during the experiments,

y = φ (x1, x2, x3, х4) we chose an incomplete cubic model,

which has the following form:

 



qkji

kjiijk

qji

jiij

qi

ii xxxxxxy
111

ˆ  (2.47)

To determine the numerical values of the coefficients of the

polynomial (2.47), it is sufficient to have 14 points of the plan

[96]. In order to select specific points for conducting

experiments, the developed software uses a method of drawing

up a plan containing a given number of experiments. It consists

in the fact that the specified points must be maximally distant

from each other in the factor space allocated on the simplex by

restrictions. For this, the distance between all candidate points

and the center of the octahedron (dmn) is calculated by the

formula:

2

1

1

2





























 

 qi ii

nimi
mn

ab

xx
d , (2.48)

where: m and n – furst and second points, і –

component number

 When executing the procedure: procedure vids_centr

(x1,x2,x3,x4:vector; cx1,cx2,cx3,cx4: Real; a,b:vector1; var

dc:vector) the distance from the candidate points in the plan

x1, x2, x3, x4 to other points cx1, cx2, cx3, cx4 is determined by

the formula (2.48). The input parameters for it are the

coordinates of the candidate points in the plan x1, x2, x3, x4

and the coordinates of another point cx1, cx2, cx3, cx4 to

which the distance needs to be found (in particular, this may be

 113

a point − the common center of the figure). In addition, the

values of the restrictions on the content of the mixture

components (arrays a, b) are passed to the procedure. The

result of the procedure is a one-dimensional array dc

containing the distances from each point to the center (or

another point).

Procedure execution: procedure max_d

(x1,x2,x3,x4,dc:vector; var max:integer) determines the

number of the array element that has the maximum value of

this distance. The input parameters of the procedure are one-

dimensional arrays x1, x2, x3, x4, corresponding to the

coordinates of the polyhedron, and a one-dimensional array dc,

the elements of which are the distances from the points of the

polyhedron to its center.

To select the points for conducting experiments, the

procedure is performed: procedure vibir_tochok (tx1, tx2, tx3,

tx4, dc: vector; dn: Real; var px1,px2,px3,px4: vector). In the

software, the distances (1id ; 5id) are calculated between each

of the obtained points and the remaining points according to

the formula (2.48). Then the researcher selects the normalized

distance (
'

mnd), the value of which affects the number of points

in the plan. It should be selected smaller when a larger number

of points is required, and larger if their number is small

enough. The normalized distance was selected, guided by the

condition:

 2

1

')2(ср

цmn

ср

ц ddd  , (2.49)

 114

where: ср

цd − average distance of a point from the

center

 The software assumes: ср

цd =0.7424, and the normalized

distance
'

mnd =1.0019. The coordinates of the points of the

polyhedron tx1, tx2, tx3, tx4 are given as parameters to the

procedure input, the vector of distances from which to the

center dc and the normalized distance dn are selected from

condition (2.49). The procedure determines two points that are

at the greatest distance from the center and from these points to

the remaining candidate points. Points for which the distances

to the two already selected points of the plan are less than the

normalized one are included in the plan, and the rest are

filtered out. Candidate points are arranged in order of

decreasing distance from them to the center of the polyhedron.

The first points in the arrays are those that are located at the

maximum distance from the center of the figure. Then points

that have a distance to the two selected points less than the

normalized one are discarded. The procedure outputs four one-

dimensional arrays px, px2, px3, px4 containing the

coordinates of the points included in the plan. If there are not

enough points in the plan to build the model, it is necessary to

reduce the selected norm, and if there are too many points, then

you can either increase the normalized distance, or repeat all

the above actions for the candidate points, not taking into

account those that are already included in the plan. For the

selected example, together with the two points that have

already been selected for the experimental plan, we obtained 15

points, but only 14 are needed, so from these points we

 115

discarded the one that has the smallest distance to the common

center of the polyhedron.

Thus, software has been developed using the simplex-

centroid method according to the McLean–Anderson

algorithm, which allows obtaining an experimental plan for

studying a four-component system, which contains 14

necessary and sufficient points.

2.5.2.1. Computer-aided planning of experiments and

optimization of composition composition to obtain

microfibrillar filaments with improved properties. As shown in

section 1.2, reducing the diameters of individual filaments to

micro- and nano-sizes and introducing substances in their

structure in the nanoscale is an effective method of modifying

synthetic fibers and threads. Adding special substances to the

mixture of incompatible polymers - compatibilizers [66],

nanoadditives [47,59,60,69] or their compositions [67,68]

allows you to control the process of in situ formation of fibrils

of one component in the matrix of the other. Thus, introducing

nanoparticles of the original [59,60] and modified silica [47]

into the melt of a PP/CPA mixture allows you to obtain

complex threads from nanofilled PP microfibrils with a high

specific surface area and improved mechanical properties.

Simultaneous addition of carbon nanotubes and sodium oleate

(compatibilizer) to the PP/SPA mixture is more effective than

individual substances [68]. Polyethylene terephthalate (PET)

fibrils in a PP matrix with maximum length and minimum

diameter were obtained by modifying a PET/PP blend using

grafted maleic anhydride and TiO2 nanoparticles [28].

 116

 When choosing the composition of the composition for

obtaining fine-fiber materials, it is important to combine their

desired indicators with the maximum content of the dispersed

phase component, since the technology for their production

from melts of polymer mixtures involves the extraction of the

matrix polymer from a composite monofilament or film [59].

This is due to the fact that increasing the concentration of the

dispersed phase polymer is a prerequisite for improving the

economic performance of production and reducing the

environmental load on the environment.

Based on this, we conducted research on optimizing the

composition of the nanofilled compatibilized

polypropylene/copolyamide blend with the maximum possible

PP content to obtain complex microfibrillar yarns with

predetermined characteristics. To reduce the time spent on

studying the four-component PP/CPA/silica/siloxane

composition, the experimental plan and the creation of a

mathematical model were carried out using the developed

software [31]. As an equation that establishes the relationship

between the content of the components of the studied system

and the properties of microfibrillar yarns, the program provides

an incomplete third-order polynomial. To estimate the

numerical values of its coefficients, an experimental plan was

drawn up in the studied region of the factor space. The input

variables were: х1, х2, х3, х4 - relative concentrations of PP,

SPA, nanoadditive and compatibilizer, respectively. The

following restrictions were imposed on the concentrations of

the ingredients of the mixed composition:

 0,2≤ x1 ≤0,45; 0,55≤ x 2 ≤0,80;

 117

 0,005≤ x3 ≤0,040; 0,001≤ x4 ≤0,010 (2.50)

In this case, the condition (2.25) must be met. The following

initial parameters were selected: у1 – average diameter of PP

microfibrils; у2 – strength of complex microfibrillar threads at

break; у3 – hygroscopicity of threads.

 In the created program, restrictions are

introduced on the content of each of the components of the

mixture – arrays a and b (Fig. 2.33).

Fig. 2.33 – Introduction of restrictions on the content of mixture

components

Next, the program performs the following actions step by step,

according to the described algorithm:

 - determines the coordinates of the vertices of the

polyhedron;

 - selects the r-dimensional faces of the polyhedron

(21  qr) and determines the coordinates of their

centroids;

 118

 - calculates the coordinates of the common center of the

polyhedron;

 - finds the distance from the candidate points in the plan

to the common center and determines the two points that lie at

the greatest distance from the center;

 - eliminates points for which the distance to the two

selected ones is less than the normalized one (for the system

under study, the following normalized distance was chosen:
'

mnd =1.0019);

 - determines the coordinates of the points that

entered the plan.

Thus, in a few fractions of a second, the program

creates an experimental plan for studying the composition of

PP/CPA/silica/siloxane according to the McLean–Anderson

algorithm, which contains 14 required points (Fig. 2.34).

Experimental studies were conducted using a

thermodynamically incompatible PP/SPA mixture, in which

the dispersed phase was isotactic polypropylene, and the

dispersion medium was alcohol-soluble copolyamide.

Pyrogenic silica (SiO2) with a specific surface area of 324 m2/g

was chosen as the nanofiller, and an organosilicon substance

(polyethylsiloxane) was chosen as the compatibilizer. The

components were mixed in a worm-disc extruder.

 119

Fig. 2.34 – Plan of experiment for studying the composition of

PP/CPA/silica/siloxane

The modifying additives were previously introduced into the

PP melt, and the resulting granules were mixed with the matrix

polymer (CPA). Composite monofilaments were formed on a

laboratory stand at a temperature of 190 0С, with a draw ratio

of 1000 %, and their thermoorientation drawing was carried out

at a temperature of 150 0С with a multiplicity of 5. Complex

threads from nanofilled PP microfibrils were obtained by

extracting the matrix polymer from composite threads with an

aqueous solution of ethyl alcohol. The strength of complex

threads at break was determined using a KT 7010 AZ brand

tearing machine. The hygroscopicity of the threads was

estimated by the weight method at an air humidity of 98 %.

The processes of PP structure formation in the matrix were

 120

studied using an MBD-15 optical microscope, determining the

average diameter of microfibrils in the bundle after extraction

of CPA from the composite extrudate.

Experimental studies carried out in accordance with the

developed plan showed that for all compositions a

microfibrillar structure is realized. The ratio of siloxane and

silica significantly affects the formation of the morphology of

the PP/SPA mixture (the average diameter of microfibrils

varies from 1.6 to 7.1 μm). All modified systems are stably

processed into composite monofilaments. After extraction of

the matrix polymer from them, complex polypropylene

microfibrillar filaments were obtained, the properties of which

are given in Table. 2.5.

Тable 2.5 – Effect of mixture composition on the average diameter

of PP microfibrils and on threads properties

N of

point
of plan

Average diameter

of microfibrils, μm
Threads

strength, MPa

Hygroscopicity

of threads, %

1 1,6 250 0,51

2 4,4 280 0,43

3 3,3 345 0,69

4 7,1 410 0,63

5 3,4 365 0,37

6 6,2 325 0,31

7 3,5 380 0,40

8 5,4 355 0,29

9 2,7 420 0,53

10 6,5 400 0,48

11 4,2 410 0,34

12 3,7 445 0,68

13 4,4 390 0,59

 14 3,2 470 0,73

 121

Based on the data in Table 2.5, the coefficients of the

polynomial (2.47) were calculated by the least squares method

in matrix form. The calculations were performed using a

previously created program in the Object Pascal language [33].

As a result, a system of equations (2.51) was obtained, which is

a mathematical model describing the process under study:



























4324314213213232

324131214321

432431421321434223

322341312144321

4324314213214342

324131214321

3.11634.179.947.4087.1678.9

00.872.1958.186.069.301.179.085.0ˆ

718904.2481.446515523111034

112828786.5487.4579.2638.4084.3409.359ˆ

399594.497.035.16105.4961.24

89.783.4637.678.233.517.424.546.3ˆ

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxy

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxy

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxy





 (2.51)

 After determining the coefficients of the regression

equation, a statistical analysis of the results was performed -

the equations were checked for adequacy, i.e. the ability of the

model to predict the results of research in a certain area with

the required accuracy [97]. The adequacy of the model was

checked using software developed by us earlier, which uses a

fairly common method, which consists in comparing the

estimates of the error variances between the response values

calculated by the regression equation at some points of the

factor space, on the one hand, and on the other hand, obtained

independently [33]. This is equivalent to testing some linear

hypothesis by calculating and analyzing the corresponding

Fisher F-ratio. This method requires the presence of several

observations for y at least at one of the points xі. For the

created model, 15 different points were determined, each of

which is repeated three times (i.e., a total of 45 observations).

 122

The input file of the observation points, which contains the

values of xі, is shown in Fig. 2.35.

 … … …

 Fig. 2.35 – File x.txt – input data of observation points

(In this case, Figure 2.35, as well as the following Figures 2.36,

2.37 and 2.38, for better understanding, data for the first,

second and last points are presented.)

 After entering the data xі, the plan matrix for the

developed model is programmatically generated (Fig. 2.36).

For the convenience of the user, it is displayed in the form

window using software created in the C++ language using

modern programming methods [104,110].

 … … …

Fig.2.36 – Programmatically generated plan matrix

 123

Thus, for the variable y1, the experimental observation data are

shown in Fig. 2.37.

 … …. …..

Fig. 2.37 – File y.txt – experimental observation data у1

The average values calculated by the software for each

observation point and the corresponding estimates of the

regression function for the variable у1of the model (2.51) are

presented in Fig. 2.38.

 … … …

Fig. 2.38 – The values of the regression function estimates and the

average values obtained in the created software

 The next step of the software is to determine Fisher's

F-ratio using formula (2.16) for all output variables of the

model (2.51). The obtained values are shown in Fig. 2.39.

 124

 а)

 b)

 c)

Fig. 2.39 – FF-ratio obtained in the software application

for у1 (а), у2 (b) та у3 (c)

According to the general provisions, the hypothesis of

the adequacy of the model ŷ is not accepted at the significance

level  if the ratio (2.16) exceeds the level quantile (1  ) of

the Fisher distribution, and in other cases it is accepted.

Provided that m > p, the ratio
2

2

2

1

S

S

has the form of the Fisher

distribution [97]. The specified check is implemented by the

software.

The results obtained indicate that the developed

mathematical model is adequate: for the significance level 

= 0.05 =),(mnpmF  = F(1514, 4515) =

F(1, 16)=4.17, i.e. for all y from model (2.51) the calculated

dispersion ratio
2

2

2

1

S

S

is less than the value),(mnpmF  .

The optimal content of ingredients in the studied four-

component mixture was determined by the multi-criteria

optimization method using software developed by us

[111,112]. Multi-criteria optimization is the process of

simultaneous optimization of several conflicting objective

functions in a certain domain of definition. In the general case,

the multi-criteria optimization problem is described by

expression (2.30), while the objective functions that are

 125

investigated at the maximum are transformed into functions

that are investigated at the minimum by formula (2.31) [100].

For a nano-filled compatibilized polypropylene/copolyamide

mixture, the multi-criteria optimization problem has the

following form:

 3241312143211 89.783.4637.678.233.517.424.546.3 xxxxxxxxxxxxy

 min399594.497.035.16105.4961.24 4324314213214342  xxxxxxxxxxxxxxxx

 3223413121443212 112828786.5487.4579.2638.4084.3409.359 xxxxxxxxxxxxy 

max718904.2481.446515523111034 432431421321434223  xxxxxxxxxxxxxxxx

 3241312143213 00.872.1958.186.069.301.179.085.0 xxxxxxxxxxxxy

max3.11634.179.947.4087.1678.9 4324314213213232  xxxxxxxxxxxxxxxx

 45.02.0 1  x (2.52)

 8.055.0 2  x

 04.0005.0 3  x

 01.0001.0 4  x

 14321  xxxx

 To solve this problem, we used the scalarization

method, that is, we converted it to the solution of some scalar

(single-criteria) problem. Scalarization was performed by the

linear convolution method, using software [111]. The

coefficients of the problem variables (у1, у2, у3) are read from

the file у.txt (Fig. 2.40).

Fig.2.40 – File y.txt – coefficients of the mathematical model

 126

 Fig. 2.41 shows the initial data of the problem.

Fig. 2.41 – Initial data of the multi-criteria problem

 The convolution weights, which determine the degree

of importance of each criterion: 34.01  ; 33.02  ;

33.03  - are specified on the software form.

 In the software, the minimization of the objective

functions that are investigated to the maximum is carried out

according to the formula:    yy maxmin  . Next, the linear

combination of the objective functions is minimized, that is,

the following problem is solved:

(2.53)

 By clicking the “reduce problem” button, the form (Fig.

2.42) displays the single-criteria problem that was obtained as a

result of the calculations.

min332211  yyyF 

 127

Fig.2.42 − The optimization problem is transformed into a single-

criteria one

Thus, using software, a mathematical model was

created in the form of a single-criteria problem (2.54), which

determines the influence of the nanoadditive and

compatibilizer on the dimensional characteristics of

polypropylene microfibrils and the properties of complex

threads.

 214321 38.15049.8682.13381.11087.117 xxxxxxF

 324131 56.37733.94039.179 xxxxxx

 4213214342 11.15065.165952.75108.336 xxxxxxxxxx

 min38.2512073.80 422431  xxxxxx

 45.02.0 1  x (2.54)

 8.055.0 2  x

 04.0005.0 3  x

 01.0001.0 4  x

 14321  xxxx

The developed model is much simpler than the multi-criteria

optimization problem and can be solved by one of the known

 128

methods and used to optimize the four-component

composition.

In order to determine the optimal composition of the

studied mixture, the so-called conditional optimization problem

was solved, which is associated with optimization under

constraints on the variables. To move from the conditional

optimization problem of the studied four-component mixture

with constraints to the problem without constraints, the penalty

function method was used [100,101], in which by  xP the

function Z will be “penalized” if the constraints are violated

(i.e., its value is increased), while the minimum of the function

Z will be located inside the constraint region. Under constraints

  0xc j
, mj ...,,2,1 , function  xP is written by equation

(2.33). The minimization problem for the

polypropylene/copolyamide/silica/siloxane system is to

minimize function  xfZ  under constraints   0xc j
,

mj ...,,2,1 , then function Z will have the following form:

    
 




m

j j xc
rxfrxZ

1

1
, (2.55)

 Provided that x has admissible values, i.e. values for

which   0xc j
, the function Z will take values that are larger

than the corresponding ones, and the difference can be reduced

by r. In the case when x has admissible indices, at the same

time approaching the boundary of the constraint region, and at

least one of the functions  xc j
 is close to zero, the values of

the functions  xP and Z will be quite large, i.e. the influence

of  xP function is manifested in the formation of a “crest

 129

with sharp edges” along the boundary of the constraint region.

Provided that the search starts from an admissible point and the

unconstrained function  rx, is minimized, the minimum

will, of course, be reached inside the admissible region for

problems with constraints. Since r is a sufficiently small value,

to reduce the influence of  xP at the minimum point, it is

necessary to make the minimum point of  rx, the

unconstrained function coincide with the minimum point of the

problems with constraints.

 To solve problem (2.54), the software creates an

unconstrained function using a penalty:

 214321 38.15049.8682.13381.11087.117 xxxxxxF

  324131 56.37733.94039.179 xxxxxx

 4213214342 11.15065.165952.75108.336 xxxxxxxxxx

  422431 38.2512073.80 xxxxxx

























332211 04.0

1

005.0

1

8.0

1

55.0

1

45.0

1

2.0

1

xxxxxx
r

  min1
01.0

1

001.0

1 2

4321

44











 xxxx

xx

 (2.56)

 The closer to the minimum the penalty is under the condition

0r , the smaller the gradient of the function will be. The

search ends under the condition nr , where  - is a given

sufficiently small number. As a result of applying the penalty

function method, we obtained an unconditional optimization

problem.

 To solve the optimization problem of the four-

component composition (2.56), the gradient method with step

 130

splitting was used [101]. It is assumed that the functions f(x),

f exist and are continuous. The method is based on an

iterative procedure, which is defined by the formula:

 kk

kk Sxx  )()1(
, (2.57)

where:
k – step size,

kS – vector in the direction

)()1(kk xx 

Gradient methods differ only in the way they determine
k ,

and
kS are usually found by solving the optimization problem

f(x) in the direction of
kS . The direction

kS depends on how the

function f(x) is approximated. To do this, a sequence of points

 )(kx , k=0,1,… is constructed that satisfy the following

condition:

    )()1(kk xfxf  , k=0,1,…. (2.58)

Sequence points  kx are calculated according to the following

rule:

  kk

kk xfgradxx  1
, k=0,1,… (2.59)

The step size
0 is not changed as long as the function

decreases at the points of the sequence. The condition for the

end of the calculations is the fulfillment of the inequalities (the

gradient  )(kxfgrad is close to zero):

 ni
dx

xdf
i

k

...,,2,1,
)(

)(

)(

  (2.60)

or

   







 



n

i i

k
k

dx

xdf
xfgrad

1

)(
)()(, (2.61)

 131

where:  – given a fairly small number

If the decrease condition is not met, the step size is usually

reduced by half (
2

k
k


 ) until the inequality

   )()1(kk xfxf  is met and the calculations are continued.

Calculations to determine the optimal content of

ingredients in the studied mixture were performed using

software [112]. The researcher begins work with the program

by specifying on the form the starting point:





















001.0

005.0

551.0

44.0

)0(x
,

initial values of variables, step size 0000001.00  and a

sufficiently small number 01.0 (Fig. 2.43).

 Fig. 2.43 – Form “Single-criteria optimization” – entering initial

values

 Constraints on the problem variables are read from the file

x.txt (Fig. 2.44).

 132

Fig. 2.44 – File x.txt for entering constraints on problem variables

 In this case, the program performs the following steps of the

algorithm:

- finds partial derivatives at the point
)0(x ;

- checks the stopping condition at  )(kxfgrad ;

- calculates the value of the function at the initial point
)0(x ,

)()0(xF ;

- takes a step along the antigradient direction

)()0(

0

)0()1(xfgradxx   ;

- calculates the value of the function at the point
)1(x .)()1(xF .

- since)()()0()1(xFxF  , the step size decreases:

00000005.0
2

0000001.0
1  .

- repeats the described operations until   )(kxfgrad .

 At the last step of the algorithm we obtain the following

values:





















02003.0

00099.0

54298.0

43598.0

)(nx
.

At the same time, the optimal values of the problem variables

appear in the corresponding fields (Fig. 2.45).

 133

 Fig. 2.45 – Form “Single-criteria optimization” – calculation

results

Thus, using the developed software, the values of the

variables 4321 ,,, xxxx are calculated, which are the optimal

contents of the ingredients of the studied four-component

mixture, and the initial parameters y1, y2, y3, which

characterize the dimensional characteristics of PP microfibrils

and the properties of polypropylene complex threads based on

them.

The optimal composition of the PP/SPA/silica/siloxane

composition for the formation of monofilaments, calculated

using computer programs at all stages of the study, is as

follows, wt. %: polypropylene - 43.6; copolyamide - 54.3;

silica - 0.1; siloxane - 2.0. It was established that the

simultaneous introduction of nanosized silica and organosilicon

liquid into the melt of the PP/SPA mixture in an amount of 1.9

and 0.1 wt. %, respectively, made it possible to implement

 134

microfibrillar morphology in the four-component composition.

At the same time, the polymer content of the dispersed phase in

it is almost 1.5 times higher than in the unfilled one. Increasing

the concentration of the fiber-forming polymer in the

composition is one of the prerequisites for increasing economic

indicators and environmental safety of the production of fine-

fiber materials by processing polymer mixtures. Studies of the

properties of complex microfibrillar threads formed from a

composition of optimal composition have shown their

significant improvement. Thus, the breaking strength is at the

level of the best samples of traditional textile PP threads. The

introduction of siloxane into the composition provides a

significant increase in the resistance of the studied threads to

self-erasure (1027 versus 516 thousand cycles for textile

threads). Modified complex threads are also characterized by

improved hygienic properties - their hygroscopicity is 17 times

higher than that of conventional textile threads.

 Conclusion

 To study four-component compositions and establish the

relationship between the content of ingredients and the

properties of products obtained from them, several software

programs have been developed that allow you to build an

experimental plan, develop mathematical models, check their

adequacy and optimize the composition of the mixture. The

experimental plan for the influence of the ratio of ingredients in

a four-component heterogeneous system is created using

software using the simplex-centroid method. In this case, the

placement of candidate points in the simplex, which is a

tetrahedron, is carried out according to the McLean-Anderson

 135

algorithm, and the necessary and sufficient number of plan

points is 14. By calculating the coordinates of the points of the

experimental plan, the content of which is subject to two-sided

restrictions, a mathematical model of the process under study is

obtained in the form of a system of regression equations. The

model is used to find the optimal composition by the method of

multi-criteria optimization. For this, the multi-criteria problem

is converted to a solution by the method of single-criteria linear

convolution. The transition from a conditional optimization

problem with constraints to an unconstrained problem is

carried out using the penalty function method. The optimal

values of the composition ingredient content and the initial

parameters characterizing the properties of products based on it

are determined using the gradient method with step splitting.

 The developed software was used, in particular, to

optimize the composition of the polypropylene/copolyamide

mixture, which contained silica as a nanofiller and

organosilicon as a compatibilizer. It was found that the

combined action of both modifying additives with a total

content of 2.0 wt. % allows to implement the process of

forming PP microfibrils in the SPA matrix and to achieve an

increase in the concentration of the dispersed phase component

to almost 45 wt. %, which is a prerequisite for improving the

economic and environmental performance of production.

Complex polypropylene threads obtained from a composition

with an optimal composition are characterized by increased

strength, resistance to self-erasing and hygroscopicity.

 Thus, the developed programs for mathematical

planning and analysis of experiments in the study of three- and

 136

four-component compositions can be used to study any mixture

systems and will help accelerate the implementation of

research and obtain products with the best performance from

them.

 In conclusion, a few words about the prospects for

further development of the polymer composites industry

and software for their creation. Despite the fact that various

types of composites have been used by mankind since ancient

times, the goal was usually to overcome some of the

shortcomings of one of the components, for example,

increasing the strength of clay bricks by adding straw. Today,

with a scientifically sound composition of the mixture,

materials with completely new properties or with significantly

improved indicators are created. In recent years, polymer

composites, including nano-filled ones, have played an

increasingly important role, the total production volume of

which is of the same order as the production of all metals. At

the same time, the number of varieties of polymer materials

exceeds the number of different types of steel. The variety of

polymer mixtures and composites will further strengthen this

trend in the future. The main reason for the growing interest in

such materials in the world is due to the combination of low

cost and small mass with excellent properties. The main

problem when using polymer compositions, from the point of

view of ecology, is the complexity of utilization and return to

secondary processing of production waste. The solution to

these problems can be the search for new types of

biotechnology for the production of both traditional and new

types of monomers and polymers (including fiber-forming

 137

ones). As an example of the implementation of fundamentally

new technologies, polylactide fibers, films and nanofilled

plastics obtained on the basis of natural polysaccharides can be

cited. At the same time, there are no complex environmental

problems due to the non-toxicity of the initial and finished

products and the possibility of their recycling, assimilation and

biodegradation in the environment.

 The current state and prospects for the development of

polymer composite materials, including nanofilled fibrous

ones, are considered, indicating that the advantages of polymer

mixtures and composites are a prerequisite for their further

widespread use in various industries, as well as in everyday life

and, most importantly, in medicine. The research and creation

of new types of polymer composites will be greatly facilitated

by the widespread use of mathematical modeling methods

using software.

 138

REFERENCES

 1. Нові функціональні речовини і матеріали хімічного

виробництва: зб. матеріалів цільової програми наукових

досліджень НАН України / НАН України. Київ:

Академперіодика, 2021. 332 с.
 2. Hassan T., Salam A., Khan A. Functional nanocomposites and

their potential applications: a review. J. of Polym. Research. 2021.

Vol. 28, № 2.
 3. Utraki L.A., Wilkie Ch.A. Polymer blends handbook.:

monograph. London: Springer New York Heidelberg Dordrecht, 2014.

2373 р.
 4. Saharudin M.S., Hasbi S., Nazri M.N.A., Inam F. A review of

recent developments in mechanical properties of polymer–clay

nanocomposites. In book: Advances in Manufacturing Engineering.

Springer Singapore: Sept. 2020. P. 107-129
 5. Nurazzi N.M., Asyraf M.R.M., Khalina A., Abdullah N.,

Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee

Ch.L., Aisyah H.A., Norrrahim M.N.F., Ilyas R. A., Harussani M.
M., Ishak M. R., Sapuan S. M. Fabrication, Functionalization, and

Application of Carbon Nanotube-Reinforced Polymer Composite:

An Overview. Polymer. 2021. №13. P.1047- 1091.

 6. Morsi M.A., Rajeh A., Al-Muntaser A.A. Reinforcement of
the optical, thermal and electrical properties of PEO based on

MWCNTs/Au hybrid fillers: Nanodielectric materials for

organoelectronic devices. Compos. Part B Eng. 2019. Р. 106957.
 7. Huang B. Carbon nanotubes and their polymeric composites:

the applications in tissue engineering. Biomanufacturing Rtviews.

2020. Vol 5. №3.
 8. Chen J., Liu B., Gao X., Xu D. A review of the interfacial

characteristics of polymer nanocomposites containing carbon nanotubes.

RSC Adv. 2018. Vol.8. P. 28048-28085.

 9. Abdelgawad A.M., Hudson S.M., Rojas O.J. Antimicrobial
wound dressing nanofiber mats from multicomponent

(chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr

Polym. 2014. Vol.100. P.166-178.
 10. Bhandari V., Jose S., Badanayak P., Sankaran A., Anandan

V. Antimicrobial Finishing of Metals, Metal Oxides, and Metal

 139

Composites on Textiles: A Systematic Review. Ind. Eng. Chem.

Res. 2022. Vol. 61, №1. Р.86-101.
 11. Fakoori E., Karami, H. Preparation and Characterization of

ZnO-PP Nanocomposite Fibers and Non-Woven Fabrics. J. Text.

Inst. 2018. Vol.109, №9. P.1152-1158.
 12. Biomedical Applications of Polymeric Nanofibers // by

editors R. Jayakumar, V. N. Shantikumar, monograph. New York:

Springer, 2012. 283 p.

 13. Kanjwal M.A., Barakat N.M., Shceikh F.A., Balk W., Khil
M.S., Kim H.Y. Efect of silver Content and Morphology on the

catalic Activity of Silver-grafted Titanium Oxide Nanostructure.

Fibers and Polymers. 2010. Vol.11, №5. P.700-709.
 14. Дзюбенко Л.С., Сап’яненко О.О., Горбик П.П., Плаван

В.П., Резанова Н.М., Лутковський Р.А., Вільцанюк О.А.

Властивості шовного матеріалу з поліпропілену модифікованого

частинками нанорозмірного срібла та кремнезему.
Наносистеми, наноматеріали, нанотехнології. 2018. т.16, №2.

С.347-362.

 15. Mukhopadhyay R., Bhaduri D., Sarkar B. Clay–polymer
nanocomposites: progress and challenges for use in sustainable water

treatment. J. Hazardous Materials. 2020. Vol.383. P.121-125.

 16. Mar Orta M., Martín J., Luis Santos J., Aparicio I., Medina-
Carrasco S., Alonso E. Biopolymer-clay nanocomposites as novel

and ecofriendly adsorbents for environmental remediation. Applied

Clay Science.2020. Vol. 198. P. 105838.

 17. Tskhe Y., Buzgo M., Simaite A. Electorospun nanofibers
with photocatalytic particles for carbon sorption. Nanotech / Biotech

France 2021 and joint virtual conferences: Book of abstracts

International Conference, 23-25 June. 2021 P.21.
 18. Murugesan S., Murugesan S., Scheibel T. Copolymer/clay

nanocomposites for biomedical applications. Advanced Functional

Materials. 2020. Vol.30, №17. P. 1908101.
 19. Felton G.P. Biodegradable polymers: Processing,

Degradation, and Applications: monograph: Nova Science

Publishers, 2011. 700 p .

 20. Chu C.C. Advancement in Biodegradation Study and
Applications. Biodegradable Polymers. 2015. Vol.1. P.22-29.

 21. Lendlein A., Sisson A.L. Handbook of Biodegradable

https://www.sciencedirect.com/science/article/abs/pii/S0169131720304038#!
https://www.sciencedirect.com/author/35488348500/julia-martin
https://www.sciencedirect.com/science/article/abs/pii/S0169131720304038#!
https://www.sciencedirect.com/science/article/abs/pii/S0169131720304038#!
https://www.sciencedirect.com/science/article/abs/pii/S0169131720304038#!
https://www.sciencedirect.com/science/article/abs/pii/S0169131720304038#!
https://www.sciencedirect.com/science/article/abs/pii/S0169131720304038#!
https://www.sciencedirect.com/journal/applied-clay-science
https://www.sciencedirect.com/journal/applied-clay-science

 140

Polymers: Synthesis, Characterization and Applications: monograph:

Wiley-VCH, 2011. 391 p.
 22. Abbasi M.A., Javadi A., Nazockdast H., Fathi A., Altstaedt

V. Effect of Dispersion and Selective Localization of Carbon

Nanotubes on Rheology and Electrical Conductivity of Polyamide 6
(PA6), Polypropylene (PP), and PA6/PP Nanocomposites. J. Polym.

Sci. Part B Polym. Phys. 2015. Vol.53, №5. Р.368-378.

 23. Soares da Silva J.P., Soares B. G., Silva A.A. , Livi S.

Double Percolation of Melt-Mixed PS/PBAT Blends Loaded With
Carbon Nanotube: Effect of Molding Temperature and the Non-

covalent Functionalization of the Filler by Ionic Liquid. Front.

Mater. Aug. 2019.p. 191.
 24. Nuzzo A., Coiai S., Carroccio S.C., Dintcheva N.T.,

Gambarotti C. Filippone G. Heat-Resistant Fully Bio-Based

Nanocomposite Blends Based on Poly(lactic Acid). Macromol.

Mater. Eng. 2014. Vol.299, №1. Р.31-40.
 25. Plavan V.P., Rezanova V.G., Budash Yu.O., Ishchenko

O.V., Rezanova N.M. Influence of aluminum oxide nanperticles on

formation of the structure and mechanical properties of microfibrillar
composites. Mechanics of Composite Materials. 2020. Vol.56, № 3.

Р.1-14.

 26. Li W., Schlarb A.K., Evstatiev M. Study of PET/PP/TiO2

microfibrillar-structured composites: Part 1. Preparation,

morphology and dynamic mechanical analysis of fibrillized blends.

J. Appl. Polym. Sci. 2009. №113. Р. 1471-1479.

 27. Резанова Н.М., Савченко Б.М., Плаван В.П., Булах В.Ю.,
Сова Н.В. Закономірності одержання нанонаповнених

полімерних матеріалів з матрично-фібрилярною структурою.

Наносистеми, наноматеріали, нанотехнології. 2017. т.15, №3.
С.559-571.

 28. Li W., Karger-Koksis J., Schlarb A.K. Dispersion of TiO2

Particles in PET/PP/TiO2 and PET/PP/PP-g-MA/TiO2 Composites
Prepared with Different Blending Procedure. Macromol. Mater. Eng.

2009. №294. Р.582-589.

 29. Zhu B., Bai T., Wang P., Wang Y., Liu Ch. , Shen Ch.

Selective dispersion of carbon nanotubes and nanoclay in
biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with

https://www.frontiersin.org/people/u/213913
https://www.frontiersin.org/people/u/654412
https://www.frontiersin.org/people/u/598675
https://pubmed.ncbi.nlm.nih.gov/?term=Zhu+B&cauthor_id=31758994
https://pubmed.ncbi.nlm.nih.gov/?term=Bai+T&cauthor_id=31758994
https://pubmed.ncbi.nlm.nih.gov/?term=Wang+P&cauthor_id=31758994
https://pubmed.ncbi.nlm.nih.gov/?term=Wang+Y&cauthor_id=31758994
https://pubmed.ncbi.nlm.nih.gov/?term=Liu+C&cauthor_id=31758994
https://pubmed.ncbi.nlm.nih.gov/?term=Shen+C&cauthor_id=31758994

 141

improved toughness, strength and thermal stabilityInt. J Biol

Macromol. 2019.
 30. Rezanova V.G., Rezanova N. M., Viltsanyuk O.O. Software

for planning and simulation in research of nano-filled three-

component systems. Nanosistemi, Nanomateriali, Nanotehnologii.
2022. Vol.20, №2. P.423-435.

 31. Rezanova V.G., Rezanova N.M. Mathematical Modelling

and Software Development to Optimize the Composition of Four-

Component Nanofilled Systems. Nanosistemi, Nanomateriali,
Nanotehnologii. 2020. Vol.18, №4. P.863-874.

 32. Резанова В.Г. Резанова Н.М. Програмне забезпечення

для дослідження полімерних систем : монографія. Київ: АртЕк,
2020. 358 с.

 33. Щербань В.Ю., Краснитський С.М., Резанова В.Г.

Математичні моделі в САПР. Обрані розділи та приклади

застосування: монографія. Київ: КНУТД, 2011. 219 с.
 34. Pukanszky B. Interfaces and interphases in multicomponent

materials: past, present, future. European Polymer Journal. 2005.

Vol.41, №4. Р.645-662.
 35. Utracki L.A. Clay-Containing nanocomposites: monograph.

UK.: Rapza Technology limited, 2004. Vol.2. 325 p.

 36. Clay Nanoparticles. Flame retardant potential of clay
nanoparticles / by edit. A. Kausar. monograph: Elsevier Ltd., 2020.

P. 169-184.

 37. Sfiligoj Smole M., Stana Kleinschek K. Nanofilled

polypropylene fibres: in book Nanofibers and nanotechnology in
textiles / by edit. P.J. Brown, K.S. Stevens. monograph, North

America: Wootheat Publishing, 2007. 530 p.

 38. Цебренко М.В., Резанова Н.М., Мельник І.А., Резанова
В.Г., Вільцанюк О.А., Хуторянський М.О. Нанонаповнені

поліпропіленові мононитки. Вісник КНУТД. 2012. №4. С.93-97.

 39. Fornes T.D., Baur J.W., Sabba Y., Thomas E.L.
Morphology and properties of melt-spun polycarbonate fibers

containing single- and multiwall carbon nanotubes. Polymer. 2006.

Vol.47, №5. Р.1704-1714.

 40. Wu M.L., Chen Yu., Zhang L., Zhan H., Qiang L., Wang
J.N. High-Performance Carbon Nanotube/Polymer Composite Fiber

https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Min+Le++Wu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Yun++Chen
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Liang++Zhang
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Hang++Zhan
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Lei++Qiang
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Jian+Nong++Wang

 142

from Layer-by-Layer Deposition. ACS Appl. Mater. Interfaces. 2016.

Vol.8, №12. P.8137-8144.
 41.Vimbela G.V., Ngo S.M., Fraze C., Yang L., Stout D.A.

Antibacterial properties and toxicity from metallic nanomaterials

 Int. Journ. of Nanomedicine, 2017. Vol. 12. P. 3941-3965.
 42. Anthony L.A. Science and thechnology of polymer nanomer

nanofibers: monograph. Hoboken, New Jersey. USA: John Wiley &

Sons Inc., 2008. 424 p.

 43. Yeo S.Y., Lee H.J., Jeong S.H. Preparation of
nanocomposite fibers for permanent antibacterial effect. Journal of

Materials Science. 2008. Vol.38, №10. Р.125-132.

 44. Патент України № UA 32794, 2008. МКП D01/10.
Антимікробна шовна хірургічна нитка з наночастинками срібла

і міді. О.Ф. Петренко, М.В. Косінов, В.Г. Каплуненко. Бюл. 10.

 45. Мельник И.А., Цебренко М.В. Закономерности

формования модифицированных полипропиленовых волокон.
Хим. волокна. 2008. №5. С. 15-18.

 46. Мельник І.А., Резанова В.Г., Цебренко М.В., Резанова

Н.М., Готфрід А.О., Вільцанюк О.А. Поліпропіленові хірургічні
мононитки з антимікробними властивостями. Вісник КНУТД.

2013. № 2. С.79-86.

 47. Rezanova N.M., Plavan V.P., Rezanova V.G., Bohatyryov
V.M. Regularities of producing of nano-filled polypropylene

microfibers. Vlakna a Textil. 2016. №2. Р.3-8.

 48. Suresh G.A. Processing and Properties of Nanocomposites:

monograph. Singapure: Toh Tuck Link World Scientific Publishing
Co., 2007. 548 p.

 49. Harrats C., Thomas S., Groeninckx G. Micro- and

nanostructured multiphase polymer blend systems phase morphology
and interfaces: monograph. Boca Raton, London New York: Taylor

& Francis Group Inc., 2006. 473 р.

 50. Nicolov N., Evstatiev M., Fakirov S. Morphology of
microfibrillar reinforced composites PET/PA 6 blend. Polymer.

1996. №37. Р.4455-4463.

 51. Fakirov S., Bhattacharyya D., Lin R. J. T., Fuchs C.,

Friedrich K. Contribution of coalescence to microfibril formation in
polymer blends during cold drawing. J. Macromol. Sci. Part B. 2007,

№46. Р.183-194.

https://www.dovepress.com/international-journal-of-nanomedicine-journal
https://www.dovepress.com/international-journal-of-nanomedicine-archive5-v1123

 143

 52. Huang M., Schlarb A.K. Polypropylene/poly(ethylene

terephthalate) microfibrillar reinforced composites manufactured by
fused filament fabricatio. J. Appl. Polym. Sci. 2021. Vol. 138, № 23.

Р. e50557.

 53. Shen J., Huang W., Zuo S. In-situ fiberized poly(ethylene
terephthalate) as a reinforcement to poly(propylene) matrix.

Macromol. Mater. and Eng. 2003. № 288. Р.658-664.

 54. Taepaiboon P., Junkasem J., Dangtungee R., Amornsakchai

T., Supaphol P. In Situ microfibrillar-reinforced composites of
isotactic polypropylene/recycled poly(ethylene terephthalate) system

and effect of compatibilizer. J. Appl. Polym. Sci. 2006. №102.

Р.1173-1181.
 55. Jayanarayanan K., Thomas S., Joseph K. Morphology, static

and dynamic mechanical properties of in situ microfibrillar

composites based on polypropylene/poly(ethylene terephthalate)

blends. Composites. Part A. 2008. № 39. Р.164-175.
 56. Thomas S., Mishra R., Kalarikka N. Micro and nano fibrillar

composites (mfcs and nfcs) from polymer blends: monograph:

Woodhead Publishing, 2017. 372 p.
 57. Rezanova N.М, Rezanova V.G., Plavan V.P., Viltsaniuk O.

О. Polypropylene fine-fiber filter materials modified with nano-

additives. Functional Materials. 2019. Vol.26, №2. Р.389-396.
 58. Tran N.H.A., Brünig H., Boldt R., Heinrich G. Morphology

Development from Rod-like to Nanofibrillar Structures of Dispersed

Poly (Lactic Acid) Phase in a Binary Blend with Poly

(Vinyl Alcohol) Matrix along the Spinline. Polymer. 2014. Vol.55,
№24. P.6354-6363.

 59. Резанова Н.М., Будаш Ю.О., Плаван В.П. Інноваційні

технології хімічних волокон. навч. посіб. Київ: КНУТД, 2017.
240 с.

 60. Tsebrenko M.V., Rezanova V.G., Tsebrenko I.O. Features

of obtaining of polypropylene microfibers with nanosize fillers. J. of
Mater. Sci. and Eng. 2010. Vol.4, №6. P.36-44.

 61. Jin K., Eyer S., Dean W., Kitto D., Bates F.S., Ellison C.J.

Bimodal nano- and micro-fiber nonwovens by melt blowing

immiscible ternary polymer blends. Industrial and Eng. Chem. Res.
2020. Vol. 59, № 12, № Р. 5238–5246.

 144

 62. Ellison C.J., Phatak A., Giles D.W., Bates F.S. Melt blown

nanofibers: Fiber diameter distributions and onset of fiber breakup.
Polymer. 2007. Vol.48, № 11. P. 3306-3316.

 63. Tran N.H.A, Brünig, H., Landwehr M.A., Vogel R., Heinrich

G. Controlling micro- and nanofibrillar morphology of polymer
blends in low-speed melt spinning process. Part II: Influences of

extrusion rate on morphological changes of PLA/PVA through a

capillary die. J. Appl. Polym. Sci. 2016. №133. Р.442-573.

 64. Beloshenko V.A., Plavan V.P., Rezanova N.M., Savchenko
B.M., Vozniak I. Production of high-performance multi-layer fine-

fibrous filter materials by application of material extrusion-based

additive manufacturing. The Inter. J. of Advan. Manufact. Techn.
2019. №101. P.2681-2688.

 65. Beloshenko V., Chishko V., Plavan V., Rezanova N.,

Savchenko B., Sova N., Vozniak I. Production of Filter Material

from Polypropylene/Copolyamide Blend by Material Extrusion-
Based Additive Manufacturing: Role of Production Conditions and

ZrO2 Nanoparticles. 3D Printing and Additive Manufacturing.

2021.Vol.8, №4. P.253-262.
 66. Rezanova V., Tsebrenko M. Influence of binary additives of

compatibilizers on the micro- and macrorheological properties of

melts of polypropylene-copolyamide mixtures. J. of Eng. Phys. and
Thermophys. 2009. Vol.81, №4. P. 766-773.

 67. Резанова Н.М., Плаван В.П., Дзюбенко Л.С., Сап’яненко

О.О., Горбик П.П., Коршун А.В. Структуроутворення у

компатибілізованих нанонаповнених розтопах
поліпропілен/пластифікований полівініловий спирт.

Наносистеми, наноматеріали, нанотехнології. 2018. т.16, №1.

С.55- 70.
 68. Rezanova N.M., Meĺnik I.A., Tsebrenko M.V., Korshun

A.V. Preparation of Nano-Filled Polypropylene Microfibers. Fibre

Chem. 2014. №46. P.21-27.
 69. Rezanova, N.M., Budash, Yu.O., Plavan, V.P., Bessarabov,

V.I. Formation of microfibrillar structure of

polypropylene/copolyamide blends in the presence of nanoparticles

of metal oxides. Voprosy khimii i khimicheskoi tekhnologii. 2021. №
1. P.71-78.

 145

 70. Резанова Н.М., Будаш Ю.О., Плаван В.П., Коршун А.В.,

Пристинський С. В. Регулювання стійкості рідких
мікроструменів поліпропілену в матриці співполіаміду за

рахунок нанодобавок. Технології та інжиніринг. 2021. №2. С.60-

69.
 71. Sangroniz L., Palacios J. K., Fernandez M., Eguiazabal J.I.,

Santamaria A., Muller A.J., European Polym. J. 2016. Vol.10, №83.

P.537-549.

 72. Azubuike L., Sundararaj U. Interface Strengthening of
PS/aPA Polymer Blend Nanocomposites via In Situ

Compatibilization: Enhancement of Electrical and Rheological

Properties. Materials. 2021. Vol. 14, №17. P. 4813.
 73. Yesil Y., Bhat G.S Structure and mechanical properties of

polyethylene melt blown nonwovens. Int. J. Sci. Tech. 2016. Vol.28,

№10. P.780-793.

 74 . Jin K., Banerji D., Bates F.S., Ellison C.J. Mechanically
robust and recyclable cross-linked fibers from melt blown

anthracene-functionalized commodity polymers. ACS Appl. Mater.

Interfaces. 2019. Vol.11, №13. P.12863-12870.
 75. Ellison C.J., Phatak A., Giles D.W., Bates F.S. Melt blown

nanofibers: Fiber diameter distributions and onset of fiber breakup.

Polymer. 2007. Vol.48, № 11. P. 3306-3316.
 76. Mei Y., Wang Z., Li X. Improving filtration performance of

electrospun nanofiber Mats by a bimodal method. J. Appl. Polym.

Sci. 2013. Vol.128, № 2. P. 1089-1099.

 77. Luo C.J., Stoyanov S.D., Stride E., Pelan E., Edirisinghe M.
Electrospinning versus fiber production methods: from specifics to

technological convergence. Chem. Soc. Rev. 2012. Vol.41, №13.

P.4708-4735.
 78. Li H., Li Y., Wang W. Needleless melt-electrospinning of

biodegradable poly(lactic acid) ultrafine fibers for removal of oil

from water. Polymer. 2017. Vol. 9., № 2. P.3-12.
 79. Erben J., Pilarova K., Sanetrnik F., Chvojka J., Jencova V.,

Blazkova L., Havlicek J., Novak O., Mikes P., Proseeka E., Lukas

D., Kuzelova-Kostakova E. The combination of melt blown and

electrospinning for bone Tissue Engineering. Mater. Lett. 2015.
Vol.143. P.172-176.

 146

 80. Wei L., Yu H., Qin X. Experimental investigation of

process parameters for the filtration property of nanofiber membrane
fabricated by needleless electrospinning apparatus. J of Ind. Textiles,

Jan. 2020.

 81. Voznyak Yu, Morawiec J., Galeski A. Ductility of
polylactide composites reinforced with poly (butylene succinate)

nanofibers. Composites Part A. 2016. Vol.90. P.218-224.

 82. Yousfi M., Dadouche T., Chomat D., Samuel C., Soulestin

J., Lacrampe M.-F., Krawczak P. Development of nanofibrillar
morphologies in poly(L-lactide)/poly(amide) blends: role of the

matrix elasticity and identification of the critical shear rate for the

nodular/fibrillar transition. RSC Adv. 2018. Vol.8. P. 22023-22041.
 83. Vozniak I., Hosseinnezhad R., Morawiec J., Galeski A.

Nanofibrillar green composites of polylactide/polyhydroxyalkanoate

produced in situ due to shear induced crystallization. Polymer. 2019.

Vol.11. P.1811-1825.
 84. Kimble L.D., Bhattacharyya D., Fakirov S. Biodegradable

microfibrillar polymer-polymer composites from poly(L-lactic

acid)/poly(glycolic acid). eXPRESS Polym. Let. 2015. Vol.9, №3.
P.300-307.

 85. Hosseinnezhad R., Vozniak I., Morawiec J., Galeski A.,

Dutkiewicz S. In situ generation of sustainable PLA-based
nanocomposites by shear induced crystallization of nanofibrillar

inclusions. RSC Adv. 2019. Vol.9. P.30370-30392.

 86. Doan V.A., Nobukava S., Yamaguchi M. Localization of

nanofibers on polymer surface using interface transfer technique.
Composites Part B. 2012. Vol. 43, №3. Р.1218-1223.

 87. Rezanova N.M., Rezanova V.G., Plavan V.P., Viltsaniuk

O.O. The Influence of Nano-Additives on the Formation of Matrix-
Fibrillar Structure in the Polymer Mixture Melts and on the

properties of Complex threads. Vlakna a Textil. 2017. №2. Р.37-42.

 88. Doan V.A., Yamaguchi M. Interphase transfer of nanofillers
and functional liquid between immiscible polymer pairs. Recent Res.

Devel. Mat. Sci. 2013. № 10. P.59-88.

 89. Manson J., Sperling H. Polymer blends and composites:

monograph. New York: Plenum Press, 1976. 440 p.
 90. Tskhe Y., Buzgo M., Simaite A. Electorospun nanofibers

with photocatalytic particles fo carbon sorption. Nanotech / Biotech

https://journals.sagepub.com/doi/abs/10.1177/1528083720901357?journalCode=jitc
https://journals.sagepub.com/doi/abs/10.1177/1528083720901357?journalCode=jitc
https://journals.sagepub.com/doi/abs/10.1177/1528083720901357?journalCode=jitc

 147

France 2021 and joint virtual conferences: Book of abstracts

International Conference, 23-25 June. 2021 P.77.
 91. Shields R.J., Bhattacharyya D., Fakirov S. Fibrillar polymer-

polymer composites: morphology, properties and application. J. оf

Mater. Sci. 2008. №43. P.6758-6770.
 92. Filters and Filtration Handbook / ed. by Ch. Dickenson.

monograph. Oxford: Elsevier Advanced Technology, 1992. 780 p.

 93. Polymer Blends / ed. by D.R. Paul, C.B.Bucknall.

monograph. New York: John Wiley & Sons Inc., 2000. Vol.1. 618 p.

 94. Chandran N, Chandran S, Maria H.J., Thomas S.

Compatibilizing action and localization of clay in a

polypropylene/natural rubber (PP/NR) blend. RSC Adv. 2015.
Vol.105, №5. P. 86265-86273.

 95. Budash Y., Rezanova N., Plavan V., Rezanova V.

Thermally and organomodified montmorillonite as effective

regulators of the structure formation process in
polypropylene/polystyrene blends. Polym. and Polym. Composites.

2022. Vol. 30. P. 1–8.

 96. Handbook of Design and Analysis of Experiments. Edited by
A. Dean, M. Morris, J. Stufken, D. Bingham // CRC Press Taylor &

Francis Group, Boca Raton, 2015. – 946 p.

 97. N. R. Draper, H. Smith Applied Regression Analysis. - John
Wiley & Sons, 1998. - 736 p.

 98. Thomas B. Barker, Andrew Milivojevich Quality by

Experimental Design. 4th Edition // Chapman & Hall, 2016. – 754 p.

 99. S. Dutta Optimization in Chemical Engineering 1st Edition //
Cambridge University Press, 2016. – 380 p.

 100. M. Bierlaire Optimization: Principles and Algorithms,

Second edition // EPFL Press, 2018. - 738 p
 101. Резанова В. Г. Резанова Н. М. Програмне забезпечення

для дослідження полімерних систем : монографія. Київ: АртЕк,

2020. 358 с.
 102. Резанова В.Г., Резанова Н.М., Куценко С.І. Свідоцтво

про реєстрацію авторського права на твір № 107120.

Комп’ютерна програма «АІПЕСС». Автоматизоване

інтерактивне планування експерименту для сумішевих систем,
дата реєстрації 09.08.2021.

https://www.google.com.ua/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Norman+R.+Draper%22
https://www.google.com.ua/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Harry+Smith%22
https://www.routledge.com/search?author=Thomas%20B.%20Barker
https://www.routledge.com/search?author=Andrew%20Milivojevich
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Suman+Dutta&text=Suman+Dutta&sort=relevancerank&search-alias=books

 148

 103. Резанова В.Г., Резанова Н.М., Куценко С.І. Свідоцтво

про реєстрацію авторського права на твір № 107121.
Комп’ютерна програма «АІПЕССу». Автоматизоване

інтерактивне планування експерименту для сумішевих систем –

удосконалена, дата реєстрації 09.08.2021.
 104. Stroustrup B. Programming: Principles and Practice Using

C++: monograph. 2nd Edition: Addison-Wesley Professional, 2014.

1312 p.

 105. Meyers S. Effective modern C ++: O'Reilly Media, 2014.
334 p.

 106. Schildt H. С++. Basic course . M.: Williams: 2018, p. 624

p.
 107. Stroustrup В. The C++ Programming Language Fourth

Edition. Addison-Wesley, 2013. – 1366 p.

 108. Васильєв О. Програмування на C++ в прикладах і

задачах. К.: Ліра-К, 2020. – 382 с.
 109. S. B. Lippman, J. Lajoie, E. Barbara My C++ Primer,

Addison-Wesley: 2012. – 976 р.

 110. B. Stroustrup Tour of C++ Addison-Wesley Professional ,
2023. – 320 р.

 111. Резанова В.Г. Перетворення задачі оптимізації при

дослідженні чотирикомпонентних сумішей полімерів. Вісник

КНУТД. 2016. №2. С.40-47.
 112. Резанова В.Г. Оптимізація складу чотирикомпонентних

сумішей полімерів із застосуванням методу штрафних функцій.

Вісник КНУТД. 2016. №3. С.59-67.
 113. Shcherban V. Yu., Rezanova V. G., Demkivska T. I.

Programming of numerical methods and examples of practical

application: monography. – Kyiv: Education of Ukraine, 2021. –150
p.

 114. Резанова В.Г., Резанова Н.М. Програмне забезпечення

для оптимізації складу багатокомпонентних сумішей. -

К.:АртЕк. - 2022. 315 с.

https://www.google.com.ua/search?hl=el&tbo=p&tbm=bks&q=inauthor:%22Stanley+B.+Lippman%22
https://www.google.com.ua/search?hl=el&tbo=p&tbm=bks&q=inauthor:%22Jos%C3%A9e+Lajoie%22
https://www.google.com.ua/search?hl=el&tbo=p&tbm=bks&q=inauthor:%22Barbara+E.+Moo%22

 149

ADDITION 1

PROGRAM LISTING

 Basic procedures and functions for implementing

interactive experiment planning for a ternary mixture

double minmax(double mas[], int len, bool findmax)
{

 double a;

 a = mas[0];
 for(int i = 0; i < len; i++)

 {

 if(findmax == false)

 {
 if(mas[i] < a) a = mas[i];

 }

 else
 {

 if(mas[i] > a) a = mas[i];

 }

 }
 return a;

}

void DrawGraph(TImage *image)
{

 x0 = floor(image->Width/2);

 y0 = floor(image->Height/2);
 image->Canvas->Pen->Color = clBlack;

 image->Canvas->Pen->Width = 2;

 image->Canvas->MoveTo(x0,0);
 image->Canvas->LineTo(x0,image->Height);

 image->Canvas->MoveTo(0,y0);

 image->Canvas->LineTo(image->Width, y0);
 image->Canvas->Pen->Color = clBlue;

 image->Canvas->Pen->Width = 1;

 for(int i = 1; i < 200; i++)

 {
 image->Canvas->MoveTo(x0+i*mashx,0);

 150

 image->Canvas->LineTo(x0+i*mashx,image->Height);

 image->Canvas->MoveTo(0,y0+i*mashy);
 image->Canvas->LineTo(image->Width, y0+i*mashy);

 }

 for(int i = 1; i < 200; i++)
 {

 image->Canvas->MoveTo(x0-i*mashx,0);

 image->Canvas->LineTo(x0-i*mashx,image->Height);

 image->Canvas->MoveTo(0,y0-i*mashy);
 image->Canvas->LineTo(image->Width, y0-i*mashy);

 }

 image->Canvas->Pen->Color = clRed;
 image->Canvas->Pen->Width = 2;

 image->Canvas->MoveTo(x0-a/2*mashx,y0); // X1

image->Canvas->LineTo(x0+a/2*mashx,y0); // X3 (отложили 5

вправо)
 image->Canvas->LineTo(x0,y0-(sqrt(3)/2 * a)*mashy);

 image->Canvas->LineTo(x0-a/2*mashx,y0); // Замкнули

 //X1,X2,X3
 image->Canvas->TextOutA(x0-a/2*mashx-20,y0,"x1");

 image->Canvas->TextOutA(x0,y0-(sqrt(3)/2 * a)*mashy-

15,"x2");
 image->Canvas->TextOutA(x0+a/2*mashx+15,y0,"x3");

 image->Canvas->Pen->Color = clBlack;

 image->Canvas->Pen->Width = 2;
}

void ClearGraph(TImage *image)

{
 image->Canvas->Pen->Mode=pmCopy;

 image->Canvas->Pen->Color = clWhite;

 image->Canvas->MoveTo(0,0);
 image->Canvas->FillRect(Rect(0,0,image->Width, image-

>Height));

}

void __fastcall TForm1::ButtonDrawClick(TObject *Sender)
{

 ClearGraph(Image1);

 151

 DrawGraph(Image1);

 GroupBox1->Visible=true;
 Form1->ScrollBox1->HorzScrollBar->Position=1111;

 Form1->ScrollBox1->VertScrollBar->Position=961;

 Form1->ScrollBox1->Height/2;
}

double max(double x, double y)

{

 if (x < y) {
 return y;

 }

 return x;
}

double min(double x, double y)

{

 if (x > y) {
 return y;

 }

 return x;
}

bool thc(double x, double y, double z, double w, double a, double b)

{
 double k, c,res;

 bool flag=false;

 if (z == x) {

 return (a == x && b >= min(y, w) && x <= max(y, w));
 }

 k = (w - y) / (z - x);

 c = y - k * x;
 res= a * k + c;

 flag=floor(b*10000000) == floor(res*10000000);

 return flag;
}

//--

void __fastcall TForm1::Button1Click(TObject *Sender)

{
 ClearGraph(Image1);

 DrawGraph(Image1);

 152

Button4->Enabled=true;

 double kx1,ky1,kx2,ky2,kx3,ky3;
 kx1 =(double) StrToFloat(Form1->Edit1->Text);

 ky1 =(double) StrToFloat(Form1->Edit2->Text);

 kx2 = (double)StrToFloat(Form1->Edit3->Text);
 ky2 = (double)StrToFloat(Form1->Edit4->Text);

 kx3 =(double) StrToFloat(Form1->Edit5->Text);

 ky3 = (double)StrToFloat(Form1->Edit6->Text);

 float r=0.0001;
 float rr=0.01f;

 float rrr=0.001f;

 float rrrr=0.0001f;
 double t=0.0001;

 double tt=0.01;

 double ttt=0.001;

 double tttt=0.0001;
 float k;

 int l=r;

 //--------------------------------------
 DrawRegions(kx1,ky1,kx2,ky2,kx3,ky3);

//==

 double eps=0.000;
 if(kx1==0)

 {

 kx1=kx1+eps;

 }
 if(kx2==0)

 {

 kx2=kx2+eps;
 }

 if(kx3==0)

 {
 kx3=kx3+eps;

 }

 if(kx1==1)

 {
 kx1=kx1-eps;

 }

 153

 if(kx2==1)

 {
 kx2=kx2-eps;

 }

 if(kx3==1)
 {

 kx3=kx3-eps;

 }

 float test;
 test=100*kx1;

 float test2=0.00002,test3;

 test2=100*test2;
 Kfx1 = kx1;

 Kfy1 = ky1;

 Kfx2 = kx2;

 Kfy2 = ky2;
 Kfx3 = kx3;

 Kfy3 = ky3;

 double ky;
 double kx;

 kx=((a/2)*mashx);

 ky=(sqrt(3)/2 * a)*mashy;
 // Регион X2:

 double RegX2[5],RegY2[5];

 RegX2[0] = x0-(kx*(1-ky2));

 RegY2[0] = y0-(ky*(ky2));
 RegX2[1] = x0+(kx*(1-ky2));

 RegY2[1] = y0-(ky*(ky2));

 RegX2[2] = x0+(kx*(1-kx2));
 RegY2[2] = y0-(ky*(kx2));

 RegX2[3] = x0-(kx*(1-kx2));

 RegY2[3] = y0-(ky*(kx2));
 RegX2[4] = RegX2[0]; RegY2[4] = RegY2[0];

 // Регион X1:

 double RegX1[5],RegY1[5];

 RegX1[0] = x0-(kx*kx1);
 RegY1[0] = y0-(ky*(1-kx1));

 RegX1[1] = x0-(kx*ky1);

 154

 RegY1[1] = y0-(ky*(1-ky1));

 if(ky1>0.50) RegX1[2] = x0-((kx/0.5)*fabs((0.5-ky1)));
 else if(ky1<0.51) RegX1[2] = x0+((kx/0.5)*(0.5-ky1));

 RegY1[2] = y0;

 if(kx1>0.5) RegX1[3] = x0-((kx/0.5)*fabs((0.5-kx1)));
 else if(kx1<0.51) RegX1[3] = x0+((kx/0.5)*(0.5-kx1));

 RegY1[3] = y0;

 RegX1[4] = RegX1[0]; RegY1[4] = RegY1[0];

 // Регион X3:
 double RegX3[5],RegY3[5];

 RegX3[0] = x0+(kx*(kx3));

 RegY3[0] = y0-(ky*(1-kx3));
 RegX3[1] = x0+(kx*(ky3));

 RegY3[1] = y0-(ky*(1-ky3));

 if(ky3>0.5) RegX3[2] = x0+((kx/0.5)*fabs(0.5-ky3));

 else if(ky3<0.51) RegX3[2] = x0-((kx/0.5)*fabs((0.5-
ky3)));

 RegY3[2] = y0;
 if(kx3>0.5) RegX3[3] = x0+((kx/0.5)*fabs(0.5-kx3));

 else if(kx3<0.51) RegX3[3] = x0-((kx/0.5)*fabs((0.5-

kx3)));

 RegY3[3] = y0;

 RegX3[4] = RegX3[0]; RegY3[4] = RegY3[0];

 //--
 // Малюємо точки і лінії регіонів X1,X2,X3:

 //DrawFigure(RegX2,RegY2,4,clBlack,clGreen);

 //DrawFigure(RegX1,RegY1,4,clBlack,clGreen);
 //DrawFigure(RegX3,RegY3,4,clBlack,clGreen);

//==
 double

peretinX1[10],peretinY1[10],peretinX2[10],peretinY2[10],

 peretinX3[10],peretinY3[10],

peretinX4[10],peretinY4[10];
 int ff1 = 0, ff2 = 0, ff3 = 0,ff4=0;

 NullMas(peretinX1,10);

 155

 NullMas(peretinY1,10);

 NullMas(peretinX2,10);
 NullMas(peretinY2,10);

 NullMas(peretinX3,10);

 NullMas(peretinY3,10);
 NullMas(peretinX4,10);

 NullMas(peretinY4,10);

 bool Fl=false;

CrossTwoPoligon2(5,RegX2,RegY2,5,RegX1,RegY1,ff1,per
etinX1,peretinY1);

CrossTwoPoligon2(5,RegX3,RegY3,5,RegX2,RegY2,ff2,peretinX2,

peretinY2);
CrossTwoPoligon2(5,RegX1,RegY1,5,RegX3,RegY3,ff3,per

etinX3,peretinY3);

 double SumaPeretX[30],SumaPeretY[30];

 NullMas(SumaPeretX,30);
 NullMas(SumaPeretY,30);

 int countsuma=0;

 for (int i=0;i<ff3;i++){
 bool

InFigure=thc(RegX2[0],RegY2[0],RegX2[1],RegY2[1],peretinX3[i],

peretinY3[i]);
 bool flag1=false;

 bool flag2=false;

 flag1=peretinX3[i]>=min(RegX2[0], RegX2[1]);

 flag2=peretinX3[i]<=max(RegX2[0], RegX2[1]);
 double test=0;

 test=max(RegX2[0],RegX2[1]);

 if(InFigure &&flag1 && flag2){
 // Form1->Image1->Canvas->Pen->Color=clBlack;

 // Form1->Image1->Canvas->Ellipse(peretinX3[i]-

5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5);
 SumaPeretX[countsuma]=peretinX3[i];

 SumaPeretY[countsuma]=peretinY3[i];

 countsuma++;

 peretinX3[i]=0;
 peretinY3[i]=0;

 } }

 156

 for (int i=0;i<ff3;i++){

 bool
InFigure=thc(RegX2[1],RegY2[1],RegX2[2],RegY2[2],peretinX3[i],

peretinY3[i]);

 if(InFigure && peretinX3[i]>=min(RegX2[1], RegX2[2])
&& peretinX3[i]<=max(RegX2[1], RegX2[2])){

 // Form1->Image1->Canvas->Pen->Color=clGreen;

 // Form1->Image1->Canvas->Ellipse(peretinX3[i]-

5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5);
 SumaPeretX[countsuma]=peretinX3[i];

 SumaPeretY[countsuma]=peretinY3[i];

 countsuma++;
 peretinX3[i]=0;

 peretinY3[i]=0;} }

 for (int i=0;i<ff3;i++){

 bool
InFigure=thc(RegX2[2],RegY2[2],RegX2[3],RegY2[3],peretinX3[i],

peretinY3[i]);

 if(InFigure && peretinX3[i]>=min(RegX2[2], RegX2[3])
&& peretinX3[i]<=max(RegX2[2], RegX2[3])){

 // Form1->Image1->Canvas->Pen->Color=clBlue;

 // Form1->Image1->Canvas->Ellipse(peretinX3[i]-
5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5);

 SumaPeretX[countsuma]=peretinX3[i];

 SumaPeretY[countsuma]=peretinY3[i];

 countsuma++;
 peretinX3[i]=0;

 peretinY3[i]=0; } }

 for (int i=0;i<ff3;i++){
 bool

InFigure=thc(RegX2[3],RegY2[3],RegX2[4],RegY2[4],peretinX3[i],

peretinY3[i]);
 if(InFigure && peretinX3[i]>=min(RegX2[3], RegX2[4])

&& peretinX3[i]<=max(RegX2[3], RegX2[4])){

 // Form1->Image1->Canvas->Pen->Color=clYellow;

 // Form1->Image1->Canvas->Ellipse(peretinX3[i]-
5,peretinY3[i]-5,peretinX3[i]+5,peretinY3[i]+5);

 SumaPeretX[countsuma]=peretinX3[i];

 157

 SumaPeretY[countsuma]=peretinY3[i];

 countsuma++;
 peretinX3[i]=0;

 peretinY3[i]=0; } }

 //DrawFigure(peretinX3,peretinY3,ff3,clRed,clBlue);
 double vx[5],vy[5]; bool Fl2[5];

 int kk=0;

 for(int i=0;i<5;i++) {

 Fl2[i]=0 ;}
 for (int j=0;j<ff3;j++) {

 for (int i=0;i<4;i++){

Fl2[i]=PointCrossTwoLine2(RegX2[i],RegY2[i],RegX2[i+1],RegY2

[i+1],peretinX3[j],peretinY3[j],peretinX3[j],peretinY3[j]+10000,vx[

kk],vy[kk]);

 if (Fl2[i]){
 kk++;

 }

 } if(kk==1){
 // Form1->Image1->Canvas->Pen->Color=clWhite;

 SumaPeretX[countsuma]=peretinX3[j];

 SumaPeretY[countsuma]=peretinY3[j];
 countsuma++;

 // Form1->Image1->Canvas->Ellipse(peretinX3[j]-

5,peretinY3[j]-5,peretinX3[j]+5,peretinY3[j]+5);

 }
 for(int d=0;d<5;d++) {

 Fl2[d]=0 ;}

 kk=0;
 }

 for (int i=0;i<ff1;i++){

 bool
InFigure=thc(RegX3[0],RegY3[0],RegX3[1],RegY3[1],peretinX1[i],

peretinY1[i]);

 bool flag1=false;

 bool flag2=false;
 flag1=peretinX1[i]>=min(RegX3[0], RegX3[1]);

 flag2=peretinX1[i]<=max(RegX3[0], RegX3[1]);

 158

 double test=0;

 test=max(RegX3[0],RegX3[1]);
 if(InFigure &&flag1 && flag2){

 // Form1->Image1->Canvas->Pen->Color=clBlack;

 // Form1->Image1->Canvas->Ellipse(peretinX1[i]-
5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5);

 SumaPeretX[countsuma]=peretinX1[i];

 SumaPeretY[countsuma]=peretinY1[i];

 countsuma++;
 peretinX1[i]=0;

 peretinY1[i]=0;

 } }
 for (int i=0;i<ff1;i++){

 bool

InFigure=thc(RegX3[1],RegY3[1],RegX3[2],RegY3[2],peretinX1[i],

peretinY1[i]);
 if(InFigure && peretinX1[i]>=min(RegX3[1], RegX3[2])

&& peretinX1[i]<=max(RegX3[1], RegX3[2])){

 // Form1->Image1->Canvas->Pen->Color=clGreen;
 // Form1->Image1->Canvas->Ellipse(peretinX1[i]-

5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5);

 SumaPeretX[countsuma]=peretinX1[i];
 SumaPeretY[countsuma]=peretinY1[i];

 countsuma++;

 peretinX1[i]=0;

 peretinY1[i]=0;} }
 for (int i=0;i<ff1;i++){

 bool

InFigure=thc(RegX3[2],RegY3[2],RegX3[3],RegY3[3],peretinX1[i],
peretinY1[i]);

 if(InFigure && peretinX1[i]>=min(RegX3[2], RegX3[3])

&& peretinX1[i]<=max(RegX3[2], RegX3[3])){
 // Form1->Image1->Canvas->Pen->Color=clBlue;

 // Form1->Image1->Canvas->Ellipse(peretinX1[i]-

5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5);

 SumaPeretX[countsuma]=peretinX1[i];
 SumaPeretY[countsuma]=peretinY1[i];

 countsuma++;

 159

 peretinX1[i]=0;

 peretinY1[i]=0; } }
 for (int i=0;i<ff1;i++){

 bool

InFigure=thc(RegX3[3],RegY3[3],RegX3[4],RegY3[4],peretinX1[i],
peretinY1[i]);

 if(InFigure && peretinX1[i]>=min(RegX3[3], RegX3[4])

&& peretinX1[i]<=max(RegX3[3], RegX3[4])){

 // Form1->Image1->Canvas->Pen->Color=clYellow;
 // Form1->Image1->Canvas->Ellipse(peretinX1[i]-

5,peretinY1[i]-5,peretinX1[i]+5,peretinY1[i]+5);

 SumaPeretX[countsuma]=peretinX1[i];
 SumaPeretY[countsuma]=peretinY1[i];

 countsuma++;

 peretinX1[i]=0;

 peretinY1[i]=0; } }
 //DrawFigure(peretinX3,peretinY3,ff3,clRed,clBlue);

 /* double vx[5],vy[5]; bool Fl2[5];

 int kk=0; */

 for(int i=0;i<5;i++) {

 Fl2[i]=0 ;}
 for (int j=0;j<ff1;j++) {

 for (int i=0;i<4;i++){

Fl2[i]=PointCrossTwoLine2(RegX3[i],RegY3[i],RegX3[i+1

],RegY3[i+1],peretinX1[j],peretinY1[j],peretinX1[j]-
10000,peretinY1[j],vx[kk],vy[kk]);

 if (Fl2[i]){

 kk++;

 }

 } if(kk==1){
 // Form1->Image1->Canvas->Pen->Color=clWhite;

 SumaPeretX[countsuma]=peretinX1[j];

 SumaPeretY[countsuma]=peretinY1[j];

 countsuma++;
 // Form1->Image1->Canvas->Ellipse(peretinX1[j]-

5,peretinY1[j]-5,peretinX1[j]+5,peretinY1[j]+5);

 160

 }

 for(int d=0;d<5;d++) {
 Fl2[d]=0 ;}

 kk=0;

 }
 //DrawFigure(peretinX1,peretinY1,ff1,clWhite,clRed);

 //

CrossTwoPoligon2(5,RegX3,RegY3,ff2,peretinX2,peretinY2,ff4,per

etinX4,peretinY4);
 // DrawFigure(peretinX4,peretinY4,ff4,clWhite,clRed);

 // PointsPeretin(RegX1,RegY1,peretinX2, peretinY2, ff2);

 // DrawFigure(peretinX2,peretinY2,ff2,clRed,clRed);

 for (int i=0;i<ff2;i++){

 bool

InFigure=thc(RegX1[0],RegY1[0],RegX1[1],RegY1[1],peretinX2[i],
peretinY2[i]);

 if(InFigure && peretinX2[i]>=min(RegX1[0], RegX1[1])

&& peretinX2[i]<=max(RegX1[0], RegX1[1])){
 // Form1->Image1->Canvas->Pen->Color=clBlack;

 // Form1->Image1->Canvas->Ellipse(peretinX2[i]-

5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5);
 SumaPeretX[countsuma]=peretinX2[i];

 SumaPeretY[countsuma]=peretinY2[i];

 countsuma++;

 peretinX2[i]=0;
 peretinY2[i]=0;

 } }

 for (int i=0;i<ff2;i++){
 bool

InFigure=thc(RegX1[1],RegY1[1],RegX1[2],RegY1[2],peretinX2[i],

peretinY2[i]);
 if(InFigure && peretinX2[i]>=min(RegX1[1], RegX1[2])

&& peretinX2[i]<=max(RegX1[1], RegX1[2])){

 // Form1->Image1->Canvas->Pen->Color=clGreen;

 // Form1->Image1->Canvas->Ellipse(peretinX2[i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5);

 SumaPeretX[countsuma]=peretinX2[i];

 161

 SumaPeretY[countsuma]=peretinY2[i];

 countsuma++;
 peretinX2[i]=0;

 peretinY2[i]=0;} }

 for (int i=0;i<ff2;i++){
 bool

InFigure=thc(RegX1[2],RegY1[2],RegX1[3],RegY1[3],peretinX2[i],

peretinY2[i]);

 if(InFigure && peretinX2[i]>=min(RegX1[2], RegX1[3])
&& peretinX2[i]<=max(RegX1[2], RegX1[3])){

 // Form1->Image1->Canvas->Pen->Color=clBlue;

 // Form1->Image1->Canvas->Ellipse(peretinX2[i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5);

 SumaPeretX[countsuma]=peretinX2[i];

 SumaPeretY[countsuma]=peretinY2[i];

 countsuma++;
 peretinX2[i]=0;

 peretinY2[i]=0; } }

 for (int i=0;i<ff2;i++){
 bool

InFigure=thc(RegX1[3],RegY1[3],RegX1[4],RegY1[4],peretinX2[i],

peretinY2[i]);
 if(InFigure && peretinX2[i]>=min(RegX1[3], RegX1[4])

&& peretinX2[i]<=max(RegX1[3], RegX1[4])){

 // Form1->Image1->Canvas->Pen->Color=clYellow;

 // Form1->Image1->Canvas->Ellipse(peretinX2[i]-
5,peretinY2[i]-5,peretinX2[i]+5,peretinY2[i]+5);

 SumaPeretX[countsuma]=peretinX2[i];

 SumaPeretY[countsuma]=peretinY2[i];
 countsuma++;

 peretinX2[i]=0;

 peretinY2[i]=0; } }
 //DrawFigure(peretinX3,peretinY3,ff3,clRed,clBlue);

 // double vx[5],vy[5]; bool Fl2[5];

 // int kk=0;

 for(int i=0;i<5;i++) {

 Fl2[i]=0 ;}

 162

 for (int j=0;j<ff2;j++) {

 for (int i=0;i<4;i++){
l2[i]=PointCrossTwoLine2(RegX1[i],RegY1[i],RegX1[i+1],

RegY1[i+1],peretinX2[j],peretinY2[j],peretinX2[j]+10000,peretinY2

[j],vx[kk],vy[kk]);
 if (Fl2[i]){

 kk++;

 }
 } if(kk==1){

 // Form1->Image1->Canvas->Pen->Color=clWhite;

 SumaPeretX[countsuma]=peretinX2[j];
 SumaPeretY[countsuma]=peretinY2[j];

 countsuma++;

 // Form1->Image1->Canvas->Ellipse(peretinX2[j]-

5,peretinY2[j]-5,peretinX2[j]+5,peretinY2[j]+5);
 }

 for(int d=0;d<5;d++) {

 Fl2[d]=0 ;}
 kk=0;

 }

 /* for (int j=0;j<ff1;j++) {
 for (int i=0;i<4;i++){

Fl2[i]=PointCrossTwoLine2(RegX3[i],RegY3[i],RegX3[i+1

],RegY3[i+1],peretinX1[j],peretinY1[j],peretinX1[j]+10000,peretinY

1[j],vx[kk],vy[kk]);
 if (Fl2[i]){

 kk++;

 }
 }

 if(kk<1){

 peretinX1[j]=0;
 peretinY1[j]=0;

 }

 kk=0;

 } */
CrossTwoPoligon2(5,RegX3,RegY3,ff2,peretinX2,peretinY

2,ff4,peretinX4,peretinY4);

 163

//==

 /* PointsPeretin(RegX3,RegY3,peretinX1, peretinY1,
ff1);

 PointsPeretin(RegX1,RegY1,peretinX2, peretinY2, ff2);

 PointsPeretin(RegX2,RegY2,peretinX3, peretinY3, ff3);
 */

 double SumaPeretX2[30],SumaPeretY2[30];

 NullMas(SumaPeretX2,30); double

SumaPeretX3[30],SumaPeretY3[30]; NullMas(SumaPeretX3,30);
 NullMas(SumaPeretY2,30);

 NullMas(SumaPeretY3,30);

 /* double SumaPeretX[30],SumaPeretY[30];
 NullMas(SumaPeretX,30);

 NullMas(SumaPeretY,30);

 double SumaPeretX2[30],SumaPeretY2[30];

 double SumaPeretX3[30],SumaPeretY3[30];
 int d=0;

 NullMas(SumaPeretX,30);

 NullMas(SumaPeretY,30);
 NullMas(SumaPeretX2,30);

 NullMas(SumaPeretY2,30);

 NullMas(SumaPeretX3,30);
 NullMas(SumaPeretY3,30);

 PointsUnite(peretinX1,peretinY1,peretinX2,peretinY2,

 peretinX3,peretinY3,SumaPeretX,SumaPeretY,d); */

 NullMas(FX,10);
 NullMas(FY,10);

 FN=0;

 DelRepeatPoints(SumaPeretX,SumaPeretY,10);
 Path(SumaPeretX,SumaPeretY,countsuma);

PointsUnite2(SumaPeretX,SumaPeretY,SumaPeretX2,Suma

PeretY2,FN);
 DelRepeatPoints(SumaPeretX2,SumaPeretY2,10);

 int FN2=0;

 for(int i=0; i<FN; i++){

 if (SumaPeretX2[i]!=0 && SumaPeretY2!=0)
 {

 SumaPeretX3[FN2]=SumaPeretX2[i];

 164

 SumaPeretY3[FN2]=SumaPeretY2[i];

 FN2++;
 } }

 FN=FN2;

 Path(SumaPeretX3,SumaPeretY3,FN);
 //

PointsUnite2(SumaPeretX2,SumaPeretY2,SumaPeretX3,SumaPeret

Y3,FN2);

DrawFigure(SumaPeretX3,SumaPeretY3,FN2,clBlack,clBla
ck);

 if (FN2==3){

 double q,qq,qqq;
 int e,ee,eee;

 bool r=false,rr=false,rrr=false;

 q=(SumaPeretX3[0]);

 qq=(SumaPeretX3[1]);
 qqq=(SumaPeretX3[2]);

 e=(SumaPeretY3[0]*100000);

 ee=(SumaPeretY3[1]*100000);
 eee=(SumaPeretY3[2]*100000);

 if (r && rr && rrr)

 {
 FN2=1;

 }

 }

 if (FN2==0)
 {

 Edit13->Color=clRed;

 Button4->Enabled=false; Error2=false;
 Error1=true;

 Button11->Visible=true;

 }
 else if (FN2==1 || FN2==2)

 {

 Edit13->Color=clRed;

 Button4->Enabled=false;
 Error1=false;

 Error2=true; Button11->Visible=true;

 165

 } else

 {
 Edit13->Color=clGreen;

 Button4->Enabled=true;

 Error1=false;
 Error2=false; Button11->Visible=false;

 }

 // FN = countsuma;

 for(int i = 0; i < FN2; i++)
 {

 FX[i] = SumaPeretX3[i];

 FY[i] = SumaPeretY3[i];
 } }

 /* for (int i=0;i<d;i++){

 if (1390!=floor(SumaPeretY[i]))

 { SumaPeretY[i]=0;
 SumaPeretX[i]=0;}

 } */

 /* for (int i=0;i<5;i++){
 bool

InFigure=thc(RegX3[3],RegY3[3],RegX3[4],RegY3[4],SumaPeretX

[i],SumaPeretY[i]);
 /* if(InFigure) {

 if (((RegX3[0]<= SumaPeretX[i])&& (RegX3[1]<=

SumaPeretX[i]))||

 ((RegX3[0]>= SumaPeretX[i])&& (RegX3[1]>=
SumaPeretX[i]))) {

 SumaPeretX[i]=0;

 }
 } */

 /* if (!InFigure) { SumaPeretX[i]=0;

 SumaPeretY[i]=0;
 } } */

 /* bool Fl,FL;

 double Xv,Yv;

 int counter=0,num=0,dd=0;
 double MaxX3,MinX3,MaxY3,MinY3;

 MaxX3=MaxMin(4,RegX3,1);

 166

 MaxY3=MaxMin(4,RegY3,1);

 MinX3=MaxMin(4,RegX3,-1);
 MinY3=MaxMin(4,RegY3,-1);

Fl=PointCrossTwoLine2(RegX3[3],RegY3[3],RegX3[4],Re

gY3[4],SumaPeretX[2],SumaPeretY[2],SumaPeretX[2]+1000,Suma
PeretY[2],Xv,Yv);

 for (int i=0;i<d;i++) {

 FL=(MaxX3<SumaPeretX[i] || MinX3>SumaPeretX[i]) ||

(MaxY3<SumaPeretY[i] || MinY3>SumaPeretY[i]);
 if (FL) { SumaPeretX[i]=0;

 SumaPeretY[i]=0;

 counter++;
 } }

 num=d-counter;

 counter=0;

 for (int i=0;i<d;i++) {
 FL=RegX2[3]>SumaPeretX[i] ||

RegX2[2]<SumaPeretX[i] || RegY2[0]>SumaPeretY[i] ||

RegY2[3]<SumaPeretY[i];
 if (FL) { SumaPeretX[i]=0;

 SumaPeretY[i]=0;

 counter++;
 } }

 counter=0;

 num=d-counter;

 for (int i=0;i<d;i++) {
 FL=RegX1[1]>SumaPeretX[i] ||

RegX1[3]<SumaPeretX[i] || RegY1[0]>SumaPeretY[i] ||

RegY1[3]<SumaPeretY[i];
 if (FL) { SumaPeretX[i]=0;

 SumaPeretY[i]=0;

 counter++;
 } }

 num=d-counter;

 for (int i=0;i<d;i++){

 if (SumaPeretX[i]!=0 && SumaPeretY[i]!=0){
 SumaPeretX2[dd]=SumaPeretX[i];

 SumaPeretY2[dd]=SumaPeretY[i];

 167

 dd++;

 }
 }

 int mm=0;

 for (int i=0;i<4;i++) {
 for (int j=0;j<dd;j++)

 {

Fl=PointCrossTwoLine2(RegX3[i],RegY3[i],RegX3[i+1],Re

gY3[i+1],SumaPeretX2[j],SumaPeretY2[j],SumaPeretX2[j]+1000,S
umaPeretY2[j],Xv,Yv);

 bool

InFigure=thc(RegX3[i],RegY3[i],RegX3[i+1],RegY3[i+1],SumaPer
etX2[j],SumaPeretY2[j]);

 bool

InFigure2=thc(RegX1[i],RegY1[i],RegX1[i+1],RegY1[i+1],SumaPe

retX2[j],SumaPeretY2[j]);
 if(InFigure==true || InFigure2==true)

 {

 SumaPeretX3[mm]=SumaPeretX2[j];
 SumaPeretY3[mm]=SumaPeretY2[j];

 mm++;

 }
 /* if (Fl && !InFigure)

 {

 SumaPeretX2[j]=0;

 SumaPeretY2[j]=0;
 //mm++;

 } */

 //}

 // }

 // Path(SumaPeretX2,SumaPeretY2,dd);
 // if (RegX3[1]<SumaPeretX[14] &&

//--

void DrawRegions(double kx1, double ky1,double

kx2,double ky2, double kx3, double ky3)
{

 double eps = 100; // Кількість частин

 168

 double kxx1,kyy1,kxx3,kyy3;

 /* kxx1 = 1 - kx1;
 kyy1 = 1 - ky1;

 kxx3 = 1 - kx3;

 kyy3 = 1 - ky3; */
 //-----------------

 kx1=(kx1*eps);

 ky1=(ky1*eps);

 kx2=(kx2*eps)+1;
 ky2=(ky2*eps)+1;

 kx3=(kx3*eps);

 ky3=(ky3*eps);
 double ky;

 double kx;

 kx=((a/2)*mashx);

 ky=(sqrt(3)/2 * a)*mashy;
 //-----------------------

 // Для X1,X2,X3:

 //--
 // X2:

 Form1->Image1->Canvas->Pen->Color = clRed;

 for(double i=kx2;i<=ky2;i++) {
 Form1->Image1->Canvas->MoveTo(x0-

(kx/eps)*(eps+1-i),y0-((ky/eps)*(i-1)));

 Form1->Image1->Canvas-

>LineTo(x0+(kx/eps)*(eps+1-i),y0-((ky/eps)*(i-1)));
 }

 //X1:

 Form1->Image1->Canvas->Pen->Color = clGray;
 for(double i=kx1;i<=(ky1);i++) {

 if(kx1<(eps/2+2))

 {
 Form1->Image1->Canvas->MoveTo(x0-(kx/eps)*(i),y0-

((ky/eps)*(eps-i)));

 Form1->Image1->Canvas-

>LineTo(x0+((kx/(eps/2))*((eps/2+1)-i-1)),y0);
 }

 if(kx1>(eps/2+1))

 169

 {

 Form1->Image1->Canvas->MoveTo(x0-(kx/eps)*(i),y0-
((ky/eps)*(eps-i)));

 Form1->Image1->Canvas->LineTo(x0-

((kx/(eps/2))*fabs(((eps/2+1)-i-1))),y0);
 }

 }

 //X3:

 Form1->Image1->Canvas->Pen->Color = clGreen;
 for(double i=kx3;i<=(ky3);i++) {

 if(kx3<(eps/2+2))

 {
 Form1->Image1->Canvas->MoveTo(x0-(kx/eps)*(-i),y0-

((ky/eps)*(eps-i)));

 Form1->Image1->Canvas->LineTo(x0-

((kx/(eps/2))*((eps/2+1)-i-1)),y0);
 }

 if(kx3>(eps/2+1))

 {
 Form1->Image1->Canvas->MoveTo(x0-(kx/eps)*(-i),y0-

((ky/eps)*(eps-i)));

 Form1->Image1->Canvas-
>LineTo(x0+((kx/(eps/2))*fabs(((eps/2+1)-i-1))),y0);

 }

 }

 //---
}

bool PointCrossTwoLine(float Xa,float Ya,float Xb,float

Yb,float Xc,float Yc,float Xd,float Yd,float &X0,float &Y0)
{

 float

A1,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0;
 int i;

 bool B;

 B=False;

 A1=Yb-Ya;
 B1=Xa-Xb;

 C1=Ya*Xb-Xa*Yb;

 170

 A2=Yd-Yc;

 B2=Xc-Xd;
 C2=Yc*Xd-Xc*Yd;

 Ra=A2*Xa+B2*Ya+C2;

 Rb=A2*Xb+B2*Yb+C2;
 Rc=A1*Xc+B1*Yc+C1;

 Rd=A1*Xd+B1*Yd+C1;

 Rab=Ra*Rb;

 Rcd=Rc*Rd;
 if (Ra==0 && Rcd<0)

 {X0=Xa;Y0=Ya;B=true;}

 else if (Rb==0 && Rcd<0)
 {X0=Xb;Y0=Yb;B=true;}

 else if (Rc==0 && Rab<0)

 {X0=Xc;Y0=Yc;B=true;}

 else if (Rd==0 && Rab<0)
 {X0=Xd;Y0=Yd;B=true;}

 else if (Ra==0 && Rc==0 && Rb!=0 &&

Rd!=0)
 {X0=Xc;Y0=Yc;B=true;}

 else if (Rb==0 && Rc==0 && Ra!=0 &&

Rd!=0)
 {X0=Xc;Y0=Yc;B=true;}

 else if (Ra==0 && Rd==0 && Rb!=0 &&

Rc!=0)

 {X0=Xd;Y0=Yd;B=true;}
 else if (Rb==0 && Rd==0 && Ra!=0 &&

Rc!=0)

 {X0=Xd;Y0=Yd;B=true;}
 else

 {

 B=((Rcd<0)&&(Rab<0));
 if (B)

 {

 D0=A1*B2-A2*B1;

 D1=C2*B1-C1*B2;
 D2=C1*A2-C2*A1;

 X0=D1/D0;

 171

 Y0=D2/D0;

 }
 }

 return B;

}
bool PointCrossTwoLine2(double Xa,double Ya,double

Xb,double Yb,double Xc,double Yc,double Xd,double Yd,double

&X0,double &Y0)

{
 double

A1,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0;

 int i;
 bool B;

 B=False;

 A1=Yb-Ya;

 B1=Xa-Xb;
 C1=Ya*Xb-Xa*Yb;

 A2=Yd-Yc;

 B2=Xc-Xd;
 C2=Yc*Xd-Xc*Yd;

 Ra=A2*Xa+B2*Ya+C2;

 Rb=A2*Xb+B2*Yb+C2;
 Rc=A1*Xc+B1*Yc+C1;

 Rd=A1*Xd+B1*Yd+C1;

 Ra=floor(Ra);

 Rb=floor(Rb);
 Rc=floor(Rc);

 Rd=floor(Rd);

 Rab=Ra*Rb;
 Rcd=Rc*Rd;

 Rab=floor(Rab);

 Rcd=floor(Rcd);
 if(Ra == -1) Ra = 0;

 if(Rb == -1) Rb = 0;

 if(Rc == -1) Rc = 0;

 if(Rd == -1) Rd = 0;
 if(Rab == -1) Rab = 0;

 if(Rcd == -1) Rcd = 0;

 172

 if (Ra==0 && Rcd<0)

 {X0=Xa;Y0=Ya;B=true;}
 else if (Rb==0 && Rcd<0)

 {X0=Xb;Y0=Yb;B=true;}

 else if (Rc==0 && Rab<0)
 {X0=Xc;Y0=Yc;B=true;}

 else if (Rd==0 && Rab<0)

 {X0=Xd;Y0=Yd;B=true;}

 else if (Ra==0 && Rc==0 && Rb!=0 &&
Rd!=0)

 {X0=Xc;Y0=Yc;B=true;}

 else if (Rb==0 && Rc==0 && Ra!=0 &&
Rd!=0)

 {X0=Xc;Y0=Yc;B=true;}

 else if (Ra==0 && Rd==0 && Rb!=0 &&

Rc!=0)
 {X0=Xd;Y0=Yd;B=true;}

 else if (Rb==0 && Rd==0 && Ra!=0 &&

Rc!=0)
 {X0=Xd;Y0=Yd;B=true;}

 else

 {
 B=((Rcd<0)&&(Rab<0));

 if (B)

 {

 D0=A1*B2-A2*B1;
 D1=C2*B1-C1*B2;

 D2=C1*A2-C2*A1;

 X0=D1/D0;
 Y0=D2/D0;

 }

 }
 return B;

}

bool cross(double Xa,double Ya,double Xb,double

Yb,double Xc,double Yc,double Xd,double Yd,double &X0,double
&Y0)

{

 173

 double

A1,B1,C1,A2,B2,C2,Ra,Rb,Rd,Rc,Rab,Rcd,D1,D2,D0,x0,y0;
 int i;

 bool B;

 B=False;
 A1=Ya-Yb;

 B1=Xb-Xa;

 C1=Xa*Yb-Xb*Ya;

 A2=Yc-Yd;
 B2=Xd-Xc;

 C2=Xc*Yd-Xd*Yc;

 Ra=A2*Xa+B2*Ya+C2;
 Rb=A2*Xb+B2*Yb+C2;

 Rc=A1*Xc+B1*Yc+C1;

 Rd=A1*Xd+B1*Yd+C1;

 D0=A1*B2-A2*B1;

 D1=C2*B1-C1*B2;
 D2=C1*A2-C2*A1;

 X0=D1/D0;

 Y0=D2/D0;
 return B;

}

bool CrossTwoPoligon (int KilksPointPol1,float

XPol1[],float YPol1[],
int KilksPointPol2,float XPol2[],float YPol2[],int &Vt,float

Xv0[],float Yv0[])

{
 bool Fl=false;

 float Xv,Yv;

 for (int k=0;k<KilksPointPol1-1;k++)
 for (int m=0;m<KilksPointPol2-1;m++)

 {

Fl=PointCrossTwoLine(XPol1[m],YPol1[m],XPol1[m+1],Y

Pol1[m+1],XPol2[k],YPol2[k],XPol2[k+1],YPol2[k+1],Xv,Yv);
 if (Fl)

 { if (Vt==0)

 174

 { Xv0[Vt] = Xv;

 Yv0[Vt] = Yv;
 Vt++;

 }

 if(Xv!=Xv0[Vt-1]||Yv!=Yv0[Vt-1])
 { Xv0[Vt] = Xv;

 Yv0[Vt] = Yv;

 Vt++;

 }
 }

 }if (Vt>=5)

 Fl=true;
 return Fl;

}

bool CrossTwoPoligon2 (int KilksPointPol1,double

XPol1[],double YPol1[],
int KilksPointPol2,double XPol2[],double YPol2[],int

&Vt,double Xv0[],double Yv0[])

{
 bool Fl=false;

 double Xv,Yv;

 for (int k=0;k<KilksPointPol1-1;k++)
 for (int m=0;m<KilksPointPol2-1;m++)

 {

Fl=PointCrossTwoLine2(XPol1[m],YPol1[m],XPol1[m+1],

YPol1[m+1],XPol2[k],YPol2[k],XPol2[k+1],YPol2[k+1],Xv,Yv);
 if (Fl)

 { if (Vt==0)

 { Xv0[Vt] = Xv;
 Yv0[Vt] = Yv;

 Vt++;

 }
 if(Xv!=Xv0[Vt-1]||Yv!=Yv0[Vt-1])

 { Xv0[Vt] = Xv;

 Yv0[Vt] = Yv;

 Vt++;
 }

 }

 175

 }if (Vt>=5)

 Fl=true;
 return Fl;

}

void NullMas(double mas[], int n)
{

 for(int i = 0; i < n; i++)

 {

 mas[i] = 0;
 }

}

void DelRepeatPoints(double masX[],double masY[], int n)
{

 for(int i = 0; i < n; i++)

 {

 for(int j = i+1; j < n; j++)
 {

 if((masX[i] == masX[j]) && (masY[i] == masY[j]))

 {
 masX[j] = 0;

 masY[j] = 0;

 }
 }

 }

 for(int i = 0; i < n-1; i++)

 {
 if(masX[i] == 0 && masY[i] == 0)

 {

 if(masX[i+1] != 0 && masY[i+1] != 0)
 {

 masX[i] = masX[i+1];

 masY[i] = masY[i+1];
 masX[i+1] = 0;

 masY[i+1] = 0;

 }

 }
 }

}

 176

void DrawFigure(double pointX[],double pointY[],int n,

TColor colline,TColor colpoint)
{

 Form1->Image1->Canvas-

>MoveTo(pointX[0],pointY[0]);
 for(int i = 0; i < n; i++)

 {

 Form1->Image1->Canvas->Pen->Color = colpoint;

 Form1->Image1->Canvas->Ellipse(pointX[i]-
5,pointY[i]-5,pointX[i]+5,pointY[i]+5);

 //Form1->Image1->Canvas->Ellipse(pointX[i]-

(5+i)*2,pointY[i]-(5+i)*2,pointX[i]+(5+i)*2,pointY[i]+(5+i)*2);
 Form1->Image1->Canvas->Pen->Color = colline;

 Form1->Image1->Canvas-

>LineTo(pointX[i],pointY[i]);

 }
 Form1->Image1->Canvas->LineTo(pointX[0],pointY[0]);

}

void Path(double X[], double Y[], int n)
{

 double Ycdet2;

 double Otbor1[10],Otbor2[10],Otbor1Y[10],Otbor2Y[10];
 NullMas(Otbor1,10);

 NullMas(Otbor2,10);

 NullMas(Otbor1Y,10);

 NullMas(Otbor2Y,10);
 ParamDet3(n,X,Y,Ycdet2);

 int g1=0,g2=0;

 for(int i=0;i<n;i++)
 {

 if (Ycdet2>=Y[i])

 {
 Otbor1[g1]=X[i];

 Otbor1Y[g1]=Y[i];

 g1++;

 }
 else

 {

 177

 Otbor2[g2]=X[i];

 Otbor2Y[g2]=Y[i];
 g2++;

 }

 }
 double tempG=0;

 double tempGG=0;

 int fl=0;

 while (true)
 {

 fl = 1;

 for(int i = 0; i < g1 - 1; i++)
 {

 if ((Otbor1[i] < Otbor1[i+1]) && Otbor1[i]!=0)

 {

 double temp = Otbor1[i];
 Otbor1[i] = Otbor1[i + 1];

 Otbor1[i + 1] = temp;

 double temp2 = Otbor1Y[i];
 Otbor1Y[i] = Otbor1Y[i + 1];

 Otbor1Y[i + 1] = temp2;

 fl = 0;
 }

 }

 if (fl == 1) break;

 }
 fl=0;

 while (true)

 {
 fl = 1;

 for(int i = 0; i < g2 - 1; i++)

 {
 if(Otbor2[i] < Otbor2[i+1] && Otbor2[i]!=0)

 {

 double temp = Otbor2[i];

 Otbor2[i] = Otbor2[i + 1];
 Otbor2[i + 1] = temp;

 double temp2 = Otbor2Y[i];

 178

 Otbor2Y[i] = Otbor2Y[i + 1];

 Otbor2Y[i + 1] = temp2;
 fl = 0;

 }

 }
 if (fl == 1) break;

 }

 for(int i=0;i<g1;i++)

 {
 X[i]=Otbor1[i];

 Y[i]=Otbor1Y[i];

 }
 for(int i=g1,j=g2-1;i<g1+g2;i++,j--)

 {

 X[i]=Otbor2[j];

 Y[i]=Otbor2Y[j];
 }

}

void PointsUnite(double peretinX1[],double
peretinY1[],double peretinX2[],double peretinY2[],

double peretinX3[],double peretinY3[],double

SumaPeretX[],double SumaPeretY[], int &d)
{

 for(int i=0;i<10;i++)

 {

 if(peretinX3[i]!=0 && peretinY3[i]!=0)
 {

 SumaPeretX[d]=peretinX3[i];

 SumaPeretY[d]=peretinY3[i];
 d++;

 }

 }
 for(int i=0;i<10;i++)

 {

 if(peretinX2[i]!=0 && peretinY2[i]!=0)

 {
 SumaPeretX[d]=peretinX2[i];

 SumaPeretY[d]=peretinY2[i];

 179

 d++;

 }
 }

 for(int i=0;i<10;i++)

 {
 if(peretinX1[i]!=0 && peretinY1[i]!=0)

 {

 SumaPeretX[d]=peretinX1[i];

 SumaPeretY[d]=peretinY1[i];
 d++;

 }

 }
}

void PointsUnite2(double peretinX3[],double

peretinY3[],double SumaPeretX[],double SumaPeretY[], int &d)

{
 for(int i=0;i<30;i++)

 {

 if(peretinX3[i]!=0 && peretinY3[i]!=0)
 {

 SumaPeretX[d]=peretinX3[i];

 SumaPeretY[d]=peretinY3[i];
 d++;

 }

 }

}
void PointsPeretin(double RegX1[],double RegY1[], double

peretinX2[], double peretinY2[], int ff2)

{
 bool fak=false;

 int kl=0;

 double ho2=0,hoho2=0;
 for(int j=0;j<ff2;j++){

 for(int i=0;i<4;i++)

 {

fak=PointCrossTwoLine2(RegX1[i],RegY1[i],RegX1[i+1],RegY1[i
+1],peretinX2[j],peretinY2[j],peretinX2[j],peretinY2[j]+5000,ho2,ho

ho2);

 180

 if (fak==true)

 {kl++; }
 if (kl>1){

 fak =false;

 kl=0;
 peretinX2[j]=0;

 peretinY2[j]=0;

 break;

 }
 }

 if(kl==0)

 {
 peretinX2[j]=0;

 peretinY2[j]=0;

 }

 if(kl==1)
 {

 kl=0;

 }
 } kl=0;

}

void __fastcall TForm1::Button2Click(TObject *Sender)
{

 /* Form1->PageControl1->ActivePage=TabSheet2;

 ClearGraph(Image2);

 //DrawGraph(Image2);
 Form1->ScrollBox2->Width/2;

 Form1->ScrollBox2->Height/2;

 double XcE,YcE,XcIm3,YcIm3;
 XcE=Image2->Width/2;

 YcE=Image2->Height/2;

 KilksPointDet = 0;
 for(int i = 0; i < 10; i++)

 {

 selectedpoints[i] = false;

 }
 ParamDet();

 ParamModeli();

 181

 BuildIm2(XcE,YcE); */

 Form2->Close();
}

//--

void ParamDet()
{

 MaxX=MaxMin(FN,FX,1);

 MaxY=MaxMin(FN,FY,1);

 MinX=MaxMin(FN,FX,-1);
 MinY=MaxMin(FN,FY,-1);

 DlDet=MaxX-MinX;

 ShDet=MaxY-MinY;
 XcDet=(MaxX+MinX)/2;

 YcDet=(MaxY+MinY)/2;

}

void ParamDet2(int KilkT, double X2[], double Y2[], double
&DlDet2, double &ShDet2)

{

 double MaxX2=MaxMin(KilkT,X2,1);
 double MaxY2=MaxMin(KilkT,Y2,1);

 double MinX2=MaxMin(KilkT,X2,-1);

 double MinY2=MaxMin(KilkT,Y2,-1);
 DlDet2=MaxX2-MinX2;

 ShDet2=MaxY2-MinY2;

}

void ParamDet3(int KilkT, double X2[], double Y2[],double
&YcDet)

{

 double MaxY2=MaxMin(KilkT,Y2,1);
 double MinY2=MaxMin(KilkT,Y2,-1);

 YcDet=(MaxY2+MinY2)/2;

}
void ParamDet4(int KilkT, double X2[], double Y2[],double

&YcDet,double &XcDet,double &DL,double &Sh)

{

 double MaxY2=MaxMin(KilkT,Y2,1);
 double MinY2=MaxMin(KilkT,Y2,-1);

 double MaxX2=MaxMin(KilkT,X2,1);

 182

 double MinX2=MaxMin(KilkT,X2,-1);

 YcDet=(MaxY2+MinY2)/2;
 XcDet=(MaxX2+MinX2)/2;

 DL=MaxX2-MinX2;

 Sh=MaxY2-MinY2;
}

double MaxMin(int n,double Z[],int p)

{

 int i;
 double q;

 q=Z[0];

 for (i=1;i<n;i++)
 if (p*q<p*Z[i]) q=Z[i];

 return q;

}

void ParamModeli()
{

 double Xmax,Ymax,Xmin,Ymin;

 Xmax=MaxX; Xmin=MinX;
 Ymax=MaxY; Ymin=MinY;

 DlMod=Xmax-Xmin;

 ShMod=Ymax-Ymin;
 XcMod=(Xmax+Xmin)/2;

 YcMod=(Ymax+Ymin)/2;

}

void BuildIm2(double XcE,double YcE)
{

 int i,j;

 mx=(Form1->ScrollBox2->Width)/DlMod;
 my=(Form1->ScrollBox2->Height)/ShMod;

 mxyIm2=mx;

 if (my<mx)mxyIm2=my;

 GraphIm2(FN,FX,FY,XcMod,YcMod, XcE, YcE,

mxyIm2, 0, 2);

 // for (j=0;j<FN; j++)

 183

 //Elipse(FX[j],FY[j],2,XcMod,YcMod, XcE, YcE,

mxyIm2);
}

void BuildIm3(double XcE,double YcE)

{
 int i,j;

 mx=(Form1->ScrollBox2->Width)/DlMod;

 my=(Form1->ScrollBox2->Height)/ShMod;

 mxyIm2=mx;
 if (my<mx)mxyIm2=my;

 GraphIm3(FN,FX,FY,XcMod,YcMod, XcE, YcE,
mxyIm2, 0, 2);

 // for (j=0;j<FN; j++)

 //Elipse(FX[j],FY[j],2,XcMod,YcMod, XcE, YcE,
mxyIm2);

}

void GraphIm2(int n, double X[], double Y[], double Xcf,
double Ycf,

 double Xce, double Yce, double mxy,int q, int p)

{
 int j;

 ky = 1;

 kx = 1;

 double Xr[300],Yr[300];
 NullMas(Xr,300);

 NullMas(Yr,300);

//==
 double** figura;

 double** matrObert;

 figura = new double*[n];
 matrObert = new double*[n];

 for(int i = 0; i < n; i++)

 {

 figura[i] = new double[3];
 matrObert[i] = new double[3];

 }

 184

 for(int i = 0; i < n; i++)

 {
 figura[i][0] = X[i];

 figura[i][1] = Y[i];

 figura[i][2] = 1;
 }

 double DlDet3, ShDet3,mashtY3,mashtX3 ;

 ParamDet2(n, X, Y, DlDet3, ShDet3);

 int kut=60;
 mashtY3 = DlDet3/ShDet3;

 mashtX3 = ShDet3/DlDet3;

 /* for(int i = 0; i < n; i++)

 {

 figura[i][0] = Xr[i];

 figura[i][1] = Yr[i];
 figura[i][2] = 1;

 } */

 double alpha = 120 * M_PI / 180; // В радіанах.
 matrObert = OberD(alpha,Xcf,Ycf);

 figura = MultipleMatrix(figura, matrObert, n);

 for(int i = 0; i < n; i++)

 {

 X[i] = figura[i][0];

 Y[i] = figura[i][1];
 } ParamDet2(n, X, Y, DlDet3, ShDet3);

 mashtY3 = DlDet3/ShDet3;

 mashtX3 = ShDet3/DlDet3;
 if (mashtY3 > 20)

 {

 ky = int(mashtY3)/3;
 // ky=5;

 }

 for(j=0;j<n;j++)

 {
 Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce;

 Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce;

 185

 }

 /* for(int i = 0; i < n; i++)
 {

 Xr[i] = figura[i][0];

 Yr[i] = figura[i][1];
 } */

 /*double DlDet2, ShDet2;

 ParamDet2(n, X, Y, DlDet2, ShDet2);

 if (ShDet2==0) {
 ShDet2=10;

 }

 mashtY = DlDet2/ShDet2;
 mashtX = ShDet2/DlDet2;

 if (floor(mashtX)==floor(mashtX3))

 {

 vxod=true;
 alpha = kut * M_PI / 180; // В радіанах.

 matrObert = OberD(alpha,Xcf,Ycf);

 figura = MultipleMatrix(figura, matrObert, n);
 for(int i = 0; i < n; i++)

 {

 X[i] = figura[i][0];
 Y[i] = figura[i][1];

 }

 double DlDet2, ShDet2;

 ParamDet2(n, X, Y, DlDet2, ShDet2);
 mashtY = DlDet2/ShDet2;

 mashtX = ShDet2/DlDet2;

 }
 if(mashtY > 20)

 {

 ky = int(mashtY)/3;
 // ky=5;

 }

 if(mashtX > 20) {kx = 20;

 }
 for(j=0;j<n;j++)

 {

 186

 Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce;

 Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce;
 }

//===
 for(int i = 0; i < n; i++)

 {

 figura[i][0] = Xr[i];

 figura[i][1] = Yr[i];
 figura[i][2] = 1;

 } double alpha2 ;

 if (vxod){
 alpha2 = -(2*kut) * M_PI / 180; // В радіанах.

 }

 else

 { alpha2 = -(kut) * M_PI / 180; // В радіанах.
 }

 matrObert = OberD(alpha2,Xcf,Ycf);

 figura = MultipleMatrix(figura, matrObert, n);

 for(int i = 0; i < n; i++)

 {
 Xr[i] = figura[i][0];

 Yr[i] = figura[i][1];

 }

//===
 for(j=0;j<n;j++)

 {

 Xr2[j]=Xr[j];
 Yr2[j]=Yr[j];

 }

 Form1->Image2->Canvas->Pen->Width=p;
 Form1->Image2->Canvas->Pen->Mode=pmCopy;

 switch(q)

 {

 case 1:Form1->Image2->Canvas->Pen-
>Color=clRed;break;

 187

 case 2:Form1->Image2->Canvas->Pen-

>Color=clBlue;break;
 case 3:Form1->Image2->Canvas->Pen-

>Color=clGreen;break;

 case 4:Form1->Image2->Canvas->Pen-
>Color=clGray;break;

 default:Form1->Image2->Canvas->Pen-

>Color=clBlack;

 }
 for(j=0;j<n;j++)

 {

 if (j==0)Form1->Image2->Canvas-
>MoveTo(Xr[j],Yr[j]);

 else Form1->Image2->Canvas->LineTo(Xr[j],Yr[j]);

 }

 Form1->Image2->Canvas->LineTo(Xr[0],Yr[0]);

 for (j=0;j<FN; j++)

 Form1->Image2->Canvas->Ellipse(Xr2[j]-5,Yr2[j]-
5,Xr2[j]+5,Yr2[j]+5);

}

double angle(int x1, int y1, int x2, int y2)
{

 return acos(

(x1*x2+y1*y2)/(sqrt((double)x1*x1+y1*y1)*sqrt((double)x2*x2+y2

*y2)));
}

void GraphIm3(int n, double X[], double Y[], double Xcf,

double Ycf,
 double Xce, double Yce, double mxy,int q, int p)

{

 int j;
 ky = 1;

 kx = 1;

 double Xr[300],Yr[300];

 NullMas(Xr,300);
 NullMas(Yr,300);

 188

//==
 double** figura;

 double** matrObert;

 figura = new double*[n];
 matrObert = new double*[n];

 for(int i = 0; i < n; i++)

 {
 figura[i] = new double[3];

 matrObert[i] = new double[3];

 }
 for(int i = 0; i < n; i++)

 {

 figura[i][0] = X[i];

 figura[i][1] = Y[i];
 figura[i][2] = 1;

 }

 bool ok=false;
 int kil=0;

 double DlDet3, ShDet3,mashtY3,mashtX3 ;

 int kut=60;
 double alpha;

 while (!ok)

 {

 ParamDet2(n, X, Y, DlDet3, ShDet3);
 mashtY3 = DlDet3/ShDet3;

 mashtX3 = ShDet3/DlDet3;

 if (mashtY3>5)
 {

 ky=int(mashtY3)/3;

 ok=true;
 break;

 }

 if (kil==3){

 ok=true;
 break;

 }

 189

 kil++;

 alpha = kut * M_PI / 180; // В радіанах.
 matrObert = OberD(alpha,Xcf,Ycf);

 figura = MultipleMatrix(figura, matrObert, n);

 for(int i = 0; i < n; i++)
 {

 X[i] = figura[i][0];

 Y[i] = figura[i][1];

 }
 }

 for(j=0;j<n;j++)

 {
 Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce;

 Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce;

 }

 for(int i = 0; i < n; i++)
 {

 figura[i][0] = Xr[i];

 figura[i][1] = Yr[i];
 figura[i][2] = 1;

 }

 double alpha2=0;
 for(int i=0;i<kil;i++){

 alpha2 =- kut* M_PI / 180;

 matrObert = OberD(alpha2,Xcf,Ycf);

 figura = MultipleMatrix(figura, matrObert, n);}

kutpov=kil;
 for(int i = 0; i < n; i++)

 {

 Xr[i] = figura[i][0];
 Yr[i] = figura[i][1];

 }

 /* matrObert = OberD(alpha,Xcf,Ycf);

 figura = MultipleMatrix(figura, matrObert, n);

 for(int i = 0; i < n; i++)

 190

 {

 X[i] = figura[i][0];
 Y[i] = figura[i][1];

 }

 double DlDet2, ShDet2;
 ParamDet2(n, X, Y, DlDet2, ShDet2);

 if (ShDet2==0) {

 ShDet2=10;

 }
 mashtY = DlDet2/ShDet2;

 mashtX = ShDet2/DlDet2;

 if (floor(mashtX)==floor(mashtX3))
 {

 vxod=true;

 alpha = kut * M_PI / 180; // В радіанах.

 matrObert = OberD(alpha,Xcf,Ycf);
 figura = MultipleMatrix(figura, matrObert, n);

 for(int i = 0; i < n; i++)

 {
 X[i] = figura[i][0];

 Y[i] = figura[i][1];

 }
 double DlDet2, ShDet2;

 ParamDet2(n, X, Y, DlDet2, ShDet2);

 mashtY = DlDet2/ShDet2;
 mashtX = ShDet2/DlDet2;

 }

 if(mashtY > 20)
 {

 ky = int(mashtY)/3;

 // ky=5;
 }

 if(mashtX > 20) {kx = 20;

 }

 for(j=0;j<n;j++)
 {

 Xr[j]=(X[j]-Xcf)*mxy/1.2*kx+Xce;

 191

 Yr[j]=(Y[j]-Ycf)*mxy/1.2*ky+Yce;

 }
//==

 for(int i = 0; i < n; i++)

 {
 figura[i][0] = Xr[i];

 figura[i][1] = Yr[i];

 figura[i][2] = 1;

 } double alpha2 ;
 if (vxod){

 alpha2 = -(2*kut) * M_PI / 180; // В радіанах.

 }
 else

 { alpha2 = -(kut) * M_PI / 180; // В радіанах.

 }

 matrObert = OberD(alpha2,Xcf,Ycf);

 figura = MultipleMatrix(figura, matrObert, n); */

 /* for(int i = 0; i < n; i++)
 {

 Xr[i] = figura[i][0];

 Yr[i] = figura[i][1];
 } */

//==

for(j=0;j<n;j++)

 {
 Xr2[j]=Xr[j];

 Yr2[j]=Yr[j];

 }
 double Xfind,Yfind,Dlfind,Shfind;

 ParamDet4(n,Xr,Yr,Yfind,Xfind,Dlfind,Shfind);

 Form1->ScrollBox2->HorzScrollBar-
>Position=(Xfind+(Dlfind/2))*0.66;//1111;

 Form1->ScrollBox2->VertScrollBar-

>Position=(Yfind+(Shfind/4))*0.66;//961;

 Form1->Image2->Canvas->Pen->Width=p;
 Form1->Image2->Canvas->Pen->Mode=pmCopy;

 switch(q)

 192

 {

 case 1:Form1->Image2->Canvas->Pen-
>Color=clRed;break;

 case 2:Form1->Image2->Canvas->Pen-

>Color=clBlue;break;
 case 3:Form1->Image2->Canvas->Pen-

>Color=clGreen;break;

 case 4:Form1->Image2->Canvas->Pen-

>Color=clGray;break;
 default:Form1->Image2->Canvas->Pen-

>Color=clBlack;

 }

 for(j=0;j<n;j++)

 {

 if (j==0)Form1->Image2->Canvas-
>MoveTo(Xr[j],Yr[j]);

 else Form1->Image2->Canvas->LineTo(Xr[j],Yr[j]);

 }
 Form1->Image2->Canvas->LineTo(Xr[0],Yr[0]);

 for (j=0;j<FN; j++)
 Form1->Image2->Canvas->Ellipse(Xr2[j]-5,Yr2[j]-

5,Xr2[j]+5,Yr2[j]+5);

}

 bool pnpoly(int npol, double xp[], double yp[], double x,

double y)

 {
 bool c = false;

 for (int i = 0, j = npol - 1; i < npol; j = i++)

 {
 if ((((yp[i] <= y) && (y < yp[j])) || ((yp[j] <= y) && (y <

yp[i]))) &&

 (((yp[j] - yp[i]) != 0) && (x > ((xp[j] - xp[i]) * (y -

yp[i]) / (yp[j] - yp[i]) + xp[i]))))
 c = !c;

 }

 193

 return c;

 }
void __fastcall TForm1::Image2MouseDown(TObject

*Sender,

 TMouseButton Button, TShiftState Shift, int X, int Y)
{

 int Xr,Yr;

 Image2->Canvas->Pen->Mode=pmXor;

 Image2->Canvas->Pen->Color=clGreen;
 Image2->Canvas->Pen->Width=2;

 double FX2[10],FY2[10];
 for(int i = 0; i < 10; i++)

 {

 FX2[i] = 0; FY2[i] = 0;

 FX2[i] =Xr2[i]; //floor(Xr2[i]);
 FY2[i] =Yr2[i]; //floor(Yr2[i]);

 }

 if(Button==mbLeft && KilksPointDet < 3)
 {

 if(pointselectmode == false)

 {
 // Перевірка, що точка знаходиться у фігурі.

 bool InFigure = pnpoly(FN,FX2,FY2, X, Y);

 if(InFigure == true)

 {
 Xd[indexPoints]=X; Xt[indexPoints]=X;

 Yd[indexPoints]=Y; Yt[indexPoints]=Y;

 if (indexPoints==0){

 Image2->Canvas-

>MoveTo(Xt[indexPoints],Yt[indexPoints]);
 Form1->Image2->Canvas->Ellipse(Xt[indexPoints]-

5,Yt[indexPoints]-5,Xt[indexPoints]+5,Yt[indexPoints]+5);

 }

 else
 {Image2->Canvas-

>LineTo(Xt[indexPoints],Yt[indexPoints]); Form1->Image2-

 194

>Canvas->Ellipse(Xt[indexPoints]-5,Yt[indexPoints]-

5,Xt[indexPoints]+5,Yt[indexPoints]+5); }
 indexPoints++;

 }

 }
 else if(pointselectmode == true)

 {

 // Знаходимо найближчу точку фігури.

 double dist[10];
 for(int i = 0; i < FN; i++)

 {

 dist[i] = sqrt(pow(FX2[i]-X,2)+pow(FY2[i]-Y,2));
 }

 double min = dist[0];

 int index = 0;

 for(int i = 1; i < FN; i++)
 {

 if(dist[i] < min && dist[i] != 0)

 {
 min = dist[i];

 index = i;

 }
 }

 if(selectedpoints[index] == false)

 {

 // Замалюємо точку:
 Form1->Image2->Canvas->Brush->Color = clRed;

 Form1->Image2->Canvas->Brush->Style = bsSolid;

 Form1->Image2->Canvas-
>FloodFill(FX2[index],FY2[index],clBlack,fsBorder);

 Form1->Image2->Canvas->Brush->Color = clWhite;

 Xd[indexPoints]=FX2[index];
Xt[indexPoints]=FX2[index];

 Yd[indexPoints]=FY2[index];

Yt[indexPoints]=FY2[index];

 if (indexPoints==0)Image2->Canvas-

>MoveTo(Xt[indexPoints],Yt[indexPoints]);

 195

 else Image2->Canvas-

>LineTo(Xt[indexPoints],Yt[indexPoints]);
 indexPoints++;

 selectedpoints[index] = true;

 }
 }

 }

 else if(Button==mbRight)

 {
 if(pointselectmode == true && indexPoints>0)

 {

 //Form1->Image2->Canvas->Brush->Color = clWhite;
 //Form1->Image2->Canvas->Brush->Style = bsSolid;

 //Form1->Image2->Canvas-

>FloodFill(Xt[indexPoints],Yt[indexPoints],clBlack,fsBorder);

 //Image2->Canvas-

>MoveTo(Xt[indexPoints],Yt[indexPoints]);

 indexPoints--;
 Image2->Canvas-

>LineTo(Xt[indexPoints],Yt[indexPoints]);

 }
 if(pointselectmode == false && indexPoints>0)

 {

 indexPoints--;

 Image2->Canvas-
>LineTo(Xt[indexPoints],Yt[indexPoints]);

 }

 }
 if(indexPoints > 2)

 {

 Xd[indexPoints]=Xd[0];
 Yd[indexPoints]=Yd[0];

 Image2->Canvas->LineTo(Xt[0],Yt[0]);

 KilksPointDet=indexPoints;

 indexPoints=0;
 Button5->Enabled=true;

 Edit14->Color=clGreen;

 196

 }

}
//--

void __fastcall TForm1::Button3Click(TObject *Sender)

{
 if (L11){

 ShowMessage("Error!!!");

 }

 else if (L111)
 {

 ShowMessage("Error!!! ");

 }
/* Form1->PageControl1->ActivePage=TabSheet1;

 //Обернена функція:

 double Xg[300],Yg[300];

 NullMas(Xg,300);
 NullMas(Yg,300);

 double XcE=Image2->Width/2;

 double YcE=Image2->Height/2;
//==

 double** figura;

 double** matrObert;
 figura = new double*[KilksPointDet];

 matrObert = new double*[KilksPointDet];

 int kut=0;

 if (vxod)
 {kut=120;

 }

 else
 {kut=60;

 }

 for(int i = 0; i < KilksPointDet; i++)
 {

 figura[i] = new double[3];

 matrObert[i] = new double[3];

 }
 for(int i = 0; i < KilksPointDet; i++)

 {

 197

 figura[i][0] = Xd[i];

 figura[i][1] = Yd[i];
 figura[i][2] = 1;

 }

 double alpha2 = kut * M_PI / 180; // В радіанах.
 matrObert = OberD(alpha2,XcMod,YcMod);

 figura = MultipleMatrix(figura, matrObert,

KilksPointDet);
 for(int i = 0; i < KilksPointDet; i++)

 {

 Xd[i] = figura[i][0];
 Yd[i] = figura[i][1];

 }

//==

 for(int j=0;j<KilksPointDet;j++)
 {

 Xg[j]=((Xd[j]-XcE)/(mxyIm2*kx/1.2))+XcMod;

 Yg[j]=((Yd[j]-YcE)/(mxyIm2*ky/1.2))+YcMod;
 }

//==

 for(int i = 0; i < KilksPointDet; i++)
 {

 figura[i][0] = Xg[i];

 figura[i][1] = Yg[i];

 figura[i][2] = 1;
 }

 double alpha3 = -kut * M_PI / 180; // В радіанах.

 matrObert = OberD(alpha3,XcMod,YcMod);

 figura = MultipleMatrix(figura, matrObert,

KilksPointDet);
 for(int i = 0; i < KilksPointDet; i++)

 {

 Xg[i] = figura[i][0];

 Yg[i] = figura[i][1];
 }

//==

 198

 DrawFigure(Xg,Yg,KilksPointDet,clWhite,clBlue);

//==
 double Xg2[300], Yg2[300];

 NullMas(Xg2,300);

 NullMas(Yg2,300);
 kx=((a/2)*mashx);

 ky=(sqrt(3)/2 * a)*mashy;

 double X1,X2,X3;
 double Y1,Y2,Y3;

 X1 = x0-a/2*mashx;

 Y1 = y0;
 X2 = x0;

 Y2 = y0-(sqrt(3)/2 * a)*mashy;

 X3 = x0+a/2*mashx;

 Y3 = y0;
 // double MatrOb[7][3];

 double** MatrOb;

 double** MatrOb2;
 double** MatrOb3;

 double** base;

 MatrOb = new double*[7];
 MatrOb2 = new double*[3];

 MatrOb3 = new double*[3];

 base = new double*[3];

 // matrObert = new double*[KilksPointDet];
 for(int i = 0; i < 7; i++)

 {

 MatrOb[i] = new double[3];
 // matrObert[i] = new double[3];

 }

 for(int i = 0; i < 3; i++)
 {

 base[i] = new double[3];

 MatrOb2[i] = new double[7];

 MatrOb3[i] = new double[7];
 // matrObert[i] = new double[3];

 }

 199

 MatrOb [0][0]=1;

 MatrOb[0][1]=0;
 MatrOb[0][2]=0;

 MatrOb[1][0]=0;

 MatrOb[1][1]=1;
 MatrOb[1][2]=0;

 MatrOb[2][0]=0;

 MatrOb[2][1]=0;

 MatrOb[2][2]=1;
 MatrOb[3][0]=double(1.0/2);

 MatrOb[3][1]=double(1.0/2);

 MatrOb[3][2]=0;
 MatrOb[4][0]=double(1.0/2);

 MatrOb[4][1]=0;

 MatrOb[4][2]=double(1.0/2);

 MatrOb[5][0]=0;
 MatrOb[5][1]=double(1.0/2);

 MatrOb[5][2]=double(1.0/2);

 MatrOb[6][0]=double(1.0/3);
 MatrOb[6][1]=double(1.0/3);

 MatrOb[6][2]=double(1.0/3);

 double kx1[5];
 double kx2[5];

 double kx3[5];

 NullMas(kx1,5);

 NullMas(kx2,5);
 NullMas(kx3,5);

 for(int i=0;i<7;i++)

 {
 for(int j = 0; j < 3; j++)

 { StringGrid1->Cells[0][i+1]=i+1;

 StringGrid2->Cells[0][i+1]=i+1;
 // StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]);

 StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]);
 // StringGrid2->Cells[4][i+1]=FloatToStr(suma[i]);

 }

 200

 }

 for(int i = 0; i < KilksPointDet; i++)
 {

Coef(X1,Y1,X2,Y2,X3,Y3,Xg[i],Yg[i],kx1[i],kx2[i],kx3[i]);

 }
//==

 Memo1->Text = "Координати: ";

 Memo1->Lines->Add("");

 double base2[3][3];
 for (int i=0;i<3;i++){

 base[0][i]=kx1[i];

 base[1][i]=kx2[i];
 base[2][i]=kx3[i];

 }

 for (int i=0;i<3;i++)

 {
 for (int j=0;j<3;j++)

 {

 base2[i][j]=base[i][j];
 }}

 /* base[0][0]=1;

 base[0][1]=2;
 base[0][2]=3;

 base[1][0]=4;

 base[1][1]=5;

 base[1][2]=6;
 base[2][0]=4;

 base[2][1]=5;

 base[2][2]=4; */
 /* double res[3][7]; double res2[3][7];

 double op;
 /* op=determinant(base,3);

 for(int i=0;i<3;i++)

{

 for (int j=0;j<3;j++)
 {

 if((i+j)%2==0)

 201

 {

 base2[i][j]=minor(i,j,base,3); //funn1k(Bee,n);
 }

 else

 {
 base2[i][j]=-(minor(i,j,base,3));

 }

 }

}
for(int i=0;i<3;i++)

{

 for(int j=0;j<3;j++)
 {

 base[i][j]=base2[i][j];

 }
}

for(int i=0;i<3;i++)

{
 for(int j=0;j<3;j++)

 {

 base2[i][j]=base[j][i];

 }

}

for(int i=0;i<3;i++)
{

 for(int j=0;j<3;j++)

 {
 base2[i][j]=base2[i][j]/op;

 }

}
for(int i=0;i<3;i++)

{

 for(int j=0;j<3;j++)

 {
 base[i][j]=base2[i][j];

 }

 202

} */

 /* double suma[7];
 for (int i=0;i<7;i++)

 {

 for (int j=0;j<3;j++)
 {

 MatrOb2[j][i]=MatrOb[i][j];

 }}

 /* for (int i=0;i<3;i++)
 {

 for (int j=0;j<7;j++)

 {
 =res[i][j];

 }} */

 /* MatrOb3=MultipleMatrix2(base,MatrOb2,3);

 for (int i=0;i<7;i++)
 {

 for (int j=0;j<3;j++)

 {
 MatrOb[i][j]=MatrOb3[j][i];

 }}

 suma[0]=0;
 suma[1]=0;

 suma[2]=0;

 suma[3]=0;

 suma[4]=0;
 suma[5]=0;

 suma[6]=0;

 for (int i=0;i<7;i++)
 {

 for (int j=0;j<3;j++)

 {
 suma[i]+=MatrOb[i][j];

 }}

 /* for (int i=0;i<3;i++)

 {
 for (int j=0;j<7;j++)

 {

 203

 res2[i][j]=MatrOb3[i][j];

 }}
 /* for (int i=0;i<7;i++)

 {

 for (int j=0;j<3;j++)
 {

 MatrOb[j][i]=res[i][j];

 }} */

 /* for(int i=0;i<7;i++)
 {

 for(int j = 0; j < 3; j++)

 { StringGrid1->Cells[0][i+1]=i+1;
 StringGrid2->Cells[0][i+1]=i+1;

 // StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]);

 StringGrid2-
>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]);

 StringGrid2->Cells[4][i+1]=FloatToStr(suma[i]);

 }
 }

 for(int i=0;i<3;i++)

 {
 for(int j = 0; j < 3; j++)

 { StringGrid3->Cells[0][i+1]=i+1;

 StringGrid3->Cells[j+1][i+1]=FloatToStr(base[i][j]);
 }

 }

 Memo1->Lines->Add("");
 for(int i = 0; i < KilksPointDet; i++)

 {

 Memo1->Text = Memo1->Text + "Значення
координати" + FloatToStrF(i+1, ffGeneral, 6, 6)+" ";

 Memo1->Text = Memo1->Text + "x1="+"";

 Memo1->Text = Memo1->Text + " " +

FloatToStrF(kx3[i], ffGeneral, 10, 10)+" ";
 Memo1->Lines->Add("");

 Memo1->Text = Memo1->Text + "x2="+"";

 204

 Memo1->Text = Memo1->Text + " " +

FloatToStrF(kx2[i], ffGeneral, 10, 10)+" ";
 Memo1->Lines->Add("");

 Memo1->Text = Memo1->Text + "x3="+"";

 Memo1->Text = Memo1->Text + " " +
FloatToStrF(kx1[i], ffGeneral, 10, 10)+" ";

 Memo1->Lines->Add("");

 Memo1->Text = Memo1->Text + "x1+x2+x3="+"";

 Memo1->Text = Memo1->Text + " " +
FloatToStrF(kx1[i]+kx2[i]+kx3[i], ffGeneral, 8, 8);

 Memo1->Lines->Add("");

 }

//===

}

//--
void Coef(double x1,double y1,double x2,double y2,double

x3,double y3,double x,double y,

double &kx1, double &kx2, double &kx3)
{

 double a,b,c,s,sum,sum2;

 s = double(0.5 *(double(fabs((double(x2 - x1)) *
(double(y3 - y1)) - (double(x3 - x1)) * (double(y2 - y1))))));

 a = double(0.5 *(double(fabs((double(x2 - x1)) *

(double(y - y1)) - (double(x - x1)) * (double(y2 - y1))))));

 b = double(0.5 *(double(fabs((double(x - x1)) *
(double(y3 - y1)) - (double(x3 - x1)) * (double(y - y1))))));

 c = double(0.5 *(double(fabs((double(x2 - x)) *

(double(y3 - y)) - (double(x3 - x)) * (double(y2 - y))))));
 kx1 = a/s;

 kx2 = b/s;

 kx3 = c/s;
 sum=kx1+kx2;

 sum2=sum+kx3;

}

//--
double** Obert(double alpha)

{

 205

 double **MatrObert;

 MatrObert = new double*[3];
 for(int i = 0; i < 3; i++)

 MatrObert[i] = new double[3];

 for(int i = 0; i < 3; i++)
 {

 for(int j = 0; j < 3; j++)

 {

 MatrObert[i][j] = 0;
 }

 MatrObert[i][i] = 1;

 }
 MatrObert[0][0] = cos(alpha);

 MatrObert[0][1] = sin(alpha);

 MatrObert[1][0] = -sin(alpha);

 MatrObert[1][1] = cos(alpha);
 return MatrObert;

}

double** MultipleMatrix(double** figura, double **matr,
int N1)

{

 double **result;
 result = new double*[N1];

 for(int i = 0; i < N1; i++)

 result[i] = new double[3];

 for(int i = 0; i < N1; i++)
 {

 for(int j = 0; j < 3; j++)

 {
 result[i][j] = 0;

 for(int k = 0; k < 3; k++)

 {
 result[i][j] += figura[i][k] *

matr[k][j];

 }

 }
 }

 return result;

 206

}

double** MultipleMatrix2(double** figura, double **matr,
int N1=3)

{

 double **result;
 result = new double*[N1];

 for(int i = 0; i < N1; i++)

 result[i] = new double[7];

 for(int i = 0; i < N1; i++)

 {

 for(int j = 0; j < 7; j++)
 {

 result[i][j] = 0;

 for(int k = 0; k < 3; k++)

 {
 result[i][j] += figura[i][k] *

matr[k][j];

 }
 }

 }

 return result;
}

//--

double **OberD(double Alfa,double a1,double a2)

{
 double **MatrPer;

 MatrPer=new double *[3];

 for (int i=0;i<3;i++)
 {

 MatrPer[i]=new double[3];

 }
 for (int i=0;i<3;i++)

 {

 for (int j=0;j<3;j++)

 {
 MatrPer[i][j]=0;

 }

 207

 }

 MatrPer[2][2]=1;
 MatrPer[0][0]=cos(Alfa);

 MatrPer[1][1]=cos(Alfa);

 MatrPer[0][1]=sin(Alfa);
 MatrPer[1][0]=-sin(Alfa);

 MatrPer[2][0]=(-a1*cos(Alfa))+(a2*sin(Alfa))+a1;

 MatrPer[2][1]=(-a1*sin(Alfa))-(a2*cos(Alfa))+a2;

 return MatrPer;
}

//--

void __fastcall TForm1::PointSelectModeClick(TObject
*Sender)

{

 pointselectmode = !pointselectmode;

}
//--

 double **Gomo(double k,double a1,double a2)

{
 double **MatrPer;

 MatrPer=new double *[3];

 for (int i=0;i<3;i++)
 {

 MatrPer[i]=new double[3];

 }

 for (int i=0;i<3;i++)
 {

 for (int j=0;j<3;j++)

 {
 MatrPer[i][j]=0;

 }

 }
 MatrPer[2][2]=1;

 MatrPer[0][0]=k;

 MatrPer[1][1]=k;

 MatrPer[2][0]=(1-k)*a1;
 MatrPer[2][1]=(1-k)*a2;

 return MatrPer;

 208

}

void __fastcall TForm1::BitBtn1Click(TObject *Sender)
{ BitBtn1->Enabled=false;

Button12->Visible=true;

 Form1->PageControl1->ActivePage=TabSheet3;
 StringGrid1->Cells[0][0]="№";

 StringGrid1->Cells[1][0]="X1";

 StringGrid1->Cells[2][0]="X2";

 StringGrid1->Cells[3][0]="X3";
 StringGrid1->Cells[4][0]="Сума";

 StringGrid2->Cells[0][0]="№";

 StringGrid3->Cells[0][0]="№";
 StringGrid2->Cells[1][0]="X1";

 StringGrid2->Cells[2][0]="X2";

 StringGrid2->Cells[3][0]="X3";

 StringGrid2->Cells[4][0]="Сума";
 StringGrid3->Cells[1][0]="X1";

 StringGrid3->Cells[2][0]="X2";

 StringGrid3->Cells[3][0]="X3";
 // StringGrid1->Cells[4][0]="Сума";

}

//--
 double determinant(double **x,int n)

{

 int i, j;

 double det=0;
 int e, f, g, h;

 if(n == 1)

 {
 return x[0][0];

 }

 else if (n == 2)
 {

 return (x[0][0]*x[1][1])-(x[0][1]*x[1][0]);

 }

 else if (n >= 3)
 {

 double **c;

 209

 c = new double *[n - 1];

 for (i = 0; i < n; i++)
 c[i] = new double[n - 1];

 for (j = 0; j < n; j++)
 {

 e = 0;

 for (g = 1; g < n; g++)

 {
 f = 0;

 for(h=0;h<n;h++)

 if (h != j)
 {

 c[e][f] = x[g][h];

 f++;

 }
 e++;

 }

 det += pow(-1, j +
2)*x[0][j]*determinant(c,n-1);

 }

 return det;
 }

 return det;

}

double minor(int i2, int j2, double **x, int n)
{

double jj = 0;

double **kk;
kk = new double *[n];

for (int i = 0; i < n; i++)

kk[i] = new double[n];
int i3=0,j3=0;

for (int i=0;i<n;i++)

 {

 for (int j=0;j<n;j++)
 {

 if(i!=i2 && j!=j2)

 210

 {

 kk[i3][j3]=x[i][j];
 j3++;

 if (j3==n-1)

 {
 j3=0;i3++;

 }

 }

 } }
jj = determinant(kk,n-1);

return jj;

}
void __fastcall TForm1::Button4Click(TObject *Sender)

{

Form1->PageControl1->ActivePage=TabSheet2;

 ClearGraph(Image2);
 Button5->Enabled=false;

 Edit14->Color=clRed;

 BitBtn1->Enabled=false;
 Button4->Enabled=false;

 //DrawGraph(Image2);

 // Form1->ScrollBox2->Width/2;
 // Form1->ScrollBox2->Height/2;

 double XcE,YcE,XcIm3,YcIm3;

 XcE=Image2->Width/2;

 YcE=Image2->Height/2;
 KilksPointDet = 0;

 for(int i = 0; i < 10; i++)

 {
 selectedpoints[i] = false;

 }

 ParamDet();
 ParamModeli();

 BuildIm3(XcE,YcE);

}

//--
void __fastcall TForm1::Button5Click(TObject *Sender)

{ Button4->Enabled=false;

 211

BitBtn1->Enabled=true;

Form1->PageControl1->ActivePage=TabSheet1;

 //Обернена функція:

 double Xg[300],Yg[300];
 NullMas(Xg,300);

 NullMas(Yg,300);

 double XcE=Image2->Width/2;

 double YcE=Image2->Height/2;
//==

 double** figura;

 double** matrObert;
 figura = new double*[KilksPointDet];

 matrObert = new double*[KilksPointDet];

 for(int i = 0; i < KilksPointDet; i++)

 {
 figura[i] = new double[3];

 matrObert[i] = new double[3];

 }
 int kut=60;

 double alpha2=0;

 for(int i = 0; i < KilksPointDet; i++)
 {

 figura[i][0] = Xd[i];

 figura[i][1] = Yd[i];

 figura[i][2] = 1;
 }

 for(int i=0;i<kutpov;i++){

 alpha2 = kut* M_PI / 180;
 matrObert = OberD(alpha2,XcMod,YcMod);

 figura = MultipleMatrix(figura, matrObert,

KilksPointDet);}
 for(int i = 0; i < KilksPointDet; i++)

 {

 Xd[i] = figura[i][0];

 Yd[i] = figura[i][1];
 }

 for(int j=0;j<KilksPointDet;j++)

 212

 {

 Xg[j]=((Xd[j]-XcE)/(mxyIm2*kx/1.2))+XcMod;
 Yg[j]=((Yd[j]-YcE)/(mxyIm2*ky/1.2))+YcMod;

 }

 for(int i = 0; i < KilksPointDet; i++)
 {

 figura[i][0] = Xg[i];

 figura[i][1] = Yg[i];

 figura[i][2] = 1;
 }

 for(int i=0;i<kutpov;i++){

 alpha2 = -kut* M_PI / 180;

 matrObert = OberD(alpha2,XcMod,YcMod);

 figura = MultipleMatrix(figura, matrObert,

KilksPointDet);}
 for(int i = 0; i < KilksPointDet; i++)

 {

 Xd[i] = figura[i][0];
 Yd[i] = figura[i][1];

 }

 for(int i = 0; i < KilksPointDet; i++)
 {

 Xg[i] = figura[i][0];

 Yg[i] = figura[i][1];

 }
 /*if (vxod)

 {kut=120;

 }
 else

 {kut=60;

 }
 for(int i = 0; i < KilksPointDet; i++)

 {

 figura[i] = new double[3];

 matrObert[i] = new double[3];
 }

 for(int i = 0; i < KilksPointDet; i++)

 213

 {

 figura[i][0] = Xd[i];
 figura[i][1] = Yd[i];

 figura[i][2] = 1;

 }
 double alpha2 = kut * M_PI / 180; // В радіанах.

 matrObert = OberD(alpha2,XcMod,YcMod);

 figura = MultipleMatrix(figura, matrObert,
KilksPointDet);

 for(int i = 0; i < KilksPointDet; i++)

 {
 Xd[i] = figura[i][0];

 Yd[i] = figura[i][1];

 }

//==
 for(int j=0;j<KilksPointDet;j++)

 {

 Xg[j]=((Xd[j]-XcE)/(mxyIm2*kx/1.2))+XcMod;
 Yg[j]=((Yd[j]-YcE)/(mxyIm2*ky/1.2))+YcMod;

 }

//==
 for(int i = 0; i < KilksPointDet; i++)

 {

 figura[i][0] = Xg[i];

 figura[i][1] = Yg[i];
 figura[i][2] = 1;

 }

 double alpha3 = -kut * M_PI / 180;
 matrObert = OberD(alpha3,XcMod,YcMod);

 figura = MultipleMatrix(figura, matrObert,
KilksPointDet);

 for(int i = 0; i < KilksPointDet; i++)

 {

 Xg[i] = figura[i][0];
 Yg[i] = figura[i][1];

 } */

 214

//==

 DrawFigure(Xg,Yg,KilksPointDet,clWhite,clBlue);
 double Xg2[300], Yg2[300];

 NullMas(Xg2,300);

 NullMas(Yg2,300);
 kx=((a/2)*mashx);

 ky=(sqrt(3)/2 * a)*mashy;

 double X1,X2,X3;

 double Y1,Y2,Y3;
 X1 = x0-a/2*mashx;

 Y1 = y0;

 X2 = x0;
 Y2 = y0-(sqrt(3)/2 * a)*mashy;

 X3 = x0+a/2*mashx;

 Y3 = y0;

 // double MatrOb[7][3];
 double** MatrOb;

 double** MatrOb2;

 double** MatrOb3;
 double** base;

 MatrOb = new double*[7];

 MatrOb2 = new double*[3];
 MatrOb3 = new double*[3];

 base = new double*[3];

 // matrObert = new double*[KilksPointDet];

 for(int i = 0; i < 7; i++)
 {

 MatrOb[i] = new double[3];

 // matrObert[i] = new double[3];
 }

 for(int i = 0; i < 3; i++)

 {
 base[i] = new double[3];

 MatrOb2[i] = new double[7];

 MatrOb3[i] = new double[7];

 // matrObert[i] = new double[3];
 }

 MatrOb [0][0]=1;

 215

 MatrOb[0][1]=0;

 MatrOb[0][2]=0;
 MatrOb[1][0]=0;

 MatrOb[1][1]=1;

 MatrOb[1][2]=0;
 MatrOb[2][0]=0;

 MatrOb[2][1]=0;

 MatrOb[2][2]=1;

 MatrOb[3][0]=double(1.0/2);
 MatrOb[3][1]=double(1.0/2);

 MatrOb[3][2]=0;

 MatrOb[4][0]=double(1.0/2);
 MatrOb[4][1]=0;

 MatrOb[4][2]=double(1.0/2);

 MatrOb[5][0]=0;

 MatrOb[5][1]=double(1.0/2);
 MatrOb[5][2]=double(1.0/2);

 MatrOb[6][0]=double(1.0/3);

 MatrOb[6][1]=double(1.0/3);
 MatrOb[6][2]=double(1.0/3);

 double test[3][7];

 double kx1[5];
 double kx2[5];

 double kx3[5];

 NullMas(kx1,5);

 NullMas(kx2,5);
 NullMas(kx3,5);

 for(int i=0;i<7;i++)

 {
 for(int j = 0; j < 3; j++)

 { StringGrid1->Cells[0][i+1]=i+1;

 StringGrid2->Cells[0][i+1]=i+1;
 // StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]);

 StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb[i][j]);
 // StringGrid2->Cells[4][i+1]=FloatToStr(suma[i]);

 }

 216

 }

 for(int i = 0; i < KilksPointDet; i++)
 {

Coef(X1,Y1,X2,Y2,X3,Y3,Xg[i],Yg[i],kx1[i],kx2[i],kx3[i]);

 }
//===

 Memo1->Text = "Координати: ";

 Memo1->Lines->Add("");

 double base2[3][3];
 for (int i=0;i<3;i++){

 base[2][i]= kx1[i];

 base[0][i]= kx3[i];
 base[1][i]=kx2[i];

 }

 for (int i=0;i<3;i++)

 {
 for (int j=0;j<3;j++)

 {

 base2[i][j]=base[i][j];
 }}

 /* base[0][0]=1;

 base[0][1]=2;
 base[0][2]=3;

 base[1][0]=4;

 base[1][1]=5;

 base[1][2]=6;
 base[2][0]=4;

 base[2][1]=5;

 base[2][2]=4; */
 double res[3][7]; double res2[3][7];

 double op;

 /* op=determinant(base,3);
 for(int i=0;i<3;i++)

{

 for (int j=0;j<3;j++)

 {
 if((i+j)%2==0)

 {

 217

 base2[i][j]=minor(i,j,base,3); //funn1k(Bee,n);

 }
 else

 {

 base2[i][j]=-(minor(i,j,base,3));
 }

 }

}

for(int i=0;i<3;i++)
{

 for(int j=0;j<3;j++)

 {
 base[i][j]=base2[i][j];

 }

}

for(int i=0;i<3;i++)
{

 for(int j=0;j<3;j++)

 {
 base2[i][j]=base[j][i];

 }

}
for(int i=0;i<3;i++)

{

 for(int j=0;j<3;j++)

 {
 base2[i][j]=base2[i][j]/op;

 }

}
for(int i=0;i<3;i++)

{

 for(int j=0;j<3;j++)
 {

 base[i][j]=base2[i][j];

 }

} */
 double suma[7];

 for (int i=0;i<7;i++)

 218

 {

 for (int j=0;j<3;j++)
 {

 MatrOb2[j][i]=MatrOb[i][j];

 }}
 for (int i=0;i<7;i++)

 {

 for (int j=0;j<3;j++)

 {
 test[j][i]=MatrOb2[j][i];

 }}

 /* for (int i=0;i<3;i++)
 {

 for (int j=0;j<7;j++)

 {

 =res[i][j];
 }} */

 MatrOb3=MultipleMatrix2(base,MatrOb2,3);

 for (int i=0;i<7;i++)
 {

 for (int j=0;j<3;j++)

 {
 MatrOb[i][j]=MatrOb3[j][i];

 }}

 suma[0]=0;

 suma[1]=0;
 suma[2]=0;

 suma[3]=0;

 suma[4]=0;
 suma[5]=0;

 suma[6]=0;

 for (int i=0;i<7;i++)
 {

 for (int j=0;j<3;j++)

 {

 suma[i]+=MatrOb[i][j];
 }}

 /* for (int i=0;i<3;i++)

 219

 {

 for (int j=0;j<7;j++)
 {

 res2[i][j]=MatrOb3[i][j];

 }}
 /* for (int i=0;i<7;i++)

 {

 for (int j=0;j<3;j++)

 {
 MatrOb[j][i]=res[i][j];

 }} */

 for(int i=0;i<7;i++)
 {

 for(int j = 0; j < 3; j++)

 { StringGrid1->Cells[0][i+1]=i+1;

 StringGrid2->Cells[0][i+1]=i+1;
 // StringGrid1-

>Cells[j+1][i+1]=FloatToStr(MatrOb2[i][j]);

 StringGrid2-
>Cells[j+1][i+1]=FloatToStrF(MatrOb[i][j], ffGeneral, 8, 8);

 StringGrid2->Cells[4][i+1]=FloatToStr(suma[i]);

 }
 }

 for(int i=0;i<3;i++)

 {

 for(int j = 0; j < 3; j++)
 { StringGrid3->Cells[0][i+1]=i+1;

 StringGrid3->Cells[j+1][i+1]=FloatToStrF(base[j][i],
ffGeneral, 8, 8);

 }

 }
 Memo1->Lines->Add("");

 for(int i = 0; i < KilksPointDet; i++)

 {

 Memo1->Text = Memo1->Text + "Значення
координати" + FloatToStrF(i+1, ffGeneral, 6, 6)+" ";

 Memo1->Lines->Add("");

 220

 Memo1->Text = Memo1->Text + "x1="+"";

 Memo1->Text = Memo1->Text + " " +
FloatToStrF(kx3[i], ffGeneral, 8, 8)+" ";

 Memo1->Lines->Add("");

 Memo1->Text = Memo1->Text + "x2="+"";
 Memo1->Text = Memo1->Text + " " +

FloatToStrF(kx2[i], ffGeneral, 8, 8)+" ";

 Memo1->Lines->Add("");

 Memo1->Text = Memo1->Text + "x3="+"";
 Memo1->Text = Memo1->Text + " " +

FloatToStrF(kx1[i], ffGeneral, 8, 8)+" ";

 Memo1->Lines->Add("");
 Memo1->Text = Memo1->Text + "x1+x2+x3="+"";

 Memo1->Text = Memo1->Text + " " +

FloatToStrF(kx1[i]+kx2[i]+kx3[i], ffGeneral, 8, 8);

 Memo1->Lines->Add("");
 }

 }

void __fastcall TForm1::Edit1Exit(TObject *Sender)
{

 Button1->Enabled=false;

 if(!TryStrToFloat(Edit1->Text,Lb1)){
 // ShowMessage("Error!!! ");

 Edit7->Color=clRed;

 L11=true;

 L1=false;
 Button3->Visible=true;

 //Lb1= double(0.01);

 // Form1->Edit1->Text=Lb1;
 }

 else {

 Lb1 =(double) StrToFloat(Form1->Edit1->Text);
 if (Lb1<=0 || Lb1>=1){

 L11=false;

 L1=false;

 Edit7->Color=clRed;
 Button3->Visible=true;

 L111=true;

 221

 // Lb1= double(0.01);

 // ShowMessage("Error!!! ");
 // Form1->Edit1->Text=double(0.01);

 }

 else
 {

 L11=false;

 L111=false;

 L1=true;
 Edit7->Color=clGreen;

 // Edit2->Enabled=true;

 Button3->Visible=false;
 if (Lb1>=Ub1)

 {

 Edit8->Color=clRed;

 U1=false;
 U11=false;

 Edit8->Color=clRed; Button6->Visible=true;

 U111=false;
 U1111=true;

 }

 else {
 Edit8->Color=clGreen;

 U11=false;

 U111=false;

 U1=true;
 Edit8->Color=clGreen; Button6->Visible=false;

 U1111=false;

 }
 }

 }

 if (L1 && L2 && L3 && U1 && U2 && U3){
 Button1->Enabled=true;

 }

 else{

 Button1->Enabled=false;
 }

}

 222

//--

void __fastcall TForm1::Edit2Exit(TObject *Sender)
{ Button1->Enabled=false;

 if(!TryStrToFloat(Edit2->Text,Ub1)){

 // ShowMessage("Error!!! ");
 Edit8->Color=clRed;

 U11=true;

 //Lb1= double(0.01);

 // Form1->Edit1->Text=Lb1;
 U1=false;

 U1111=false;

 Button6->Visible=true;
 }

 else {

 Ub1 =(double) StrToFloat(Form1->Edit2->Text);

 if (Ub1<=0 || Ub1>=1){
 U11=false;

 Edit8->Color=clRed; Button6->Visible=true;

 U111=true;
 U1=false;

 U1111=false;

 }
 else

 {

 U11=false;

 U111=false;
 U1=true;

 U1111=false;

 Edit8->Color=clGreen; Button6->Visible=false;
 if (Lb1>=Ub1)

 {

 Edit8->Color=clRed;
 U1=false;

 U11=false;

 Edit8->Color=clRed; Button6->Visible=true;

 U111=false;
 U1111=true;

 }

 223

 else {

 Edit8->Color=clGreen;
 U11=false;

 U111=false;

 U1=true;
 Edit8->Color=clGreen; Button6->Visible=false;

 U1111=false;

 }

 }
 }

 if (L1 && L2 && L3 && U1 && U2 && U3){

 Button1->Enabled=true;
 }

 else{

 Button1->Enabled=false;

 }
}

//--

void __fastcall TForm1::Button6Click(TObject *Sender)
{

 if (U11){

 ShowMessage("Error!!!!!!");
 }

 else if (U111)

 {

 ShowMessage("Error!!! ");
 }

 else if (U1111){

 ShowMessage("Error!!! є");
 }

}

//--
void __fastcall TForm1::Edit3Exit(TObject *Sender)

{ Button1->Enabled=false;

if(!TryStrToFloat(Edit3->Text,Lb2)){

 Edit9->Color=clRed;

 L22=true;

 224

 L2=false; Button7->Visible=true;

 }
 else {

 Lb2 =(double) StrToFloat(Form1->Edit3->Text);

 if (Lb2<=0 || Lb2>=1){
 L22=false;

 Edit9->Color=clRed; Button7->Visible=true;

 L222=true;

 L2=false;
 }

 else

 {
 L22=false;

 L222=false;

 L2=true;

 Edit9->Color=clGreen;
 Edit2->Enabled=true; Button7->Visible=false;

 if(Lb2>=Ub2){

 Edit10->Color=clRed; Button8->Visible=true;
 U2=false;

 U22=false;

 Edit10->Color=clRed;
 U222=false;

 U2222=true;

 }

 else {
 Edit10->Color=clGreen; Button8->Visible=false;

 U22=false;

 U222=false;
 U2=true;

 Edit10->Color=clGreen;

 U2222=false;
 }

 }

 }

 if (L1 && L2 && L3 && U1 && U2 && U3){
 Button1->Enabled=true;

 }

 225

 else{

 Button1->Enabled=false;
 }

}

//--
void __fastcall TForm1::Button7Click(TObject *Sender)

{

 if (L22){

 ShowMessage("Error!!! ");
 }

 else if (L222)

 {
 ShowMessage("Error!!! ");

 }

}

//--
void __fastcall TForm1::Button8Click(TObject *Sender)

{

if (U22){
 ShowMessage("Error!!! ");

 }

 else if (U222)
 {

 ShowMessage("Error!!! ");

 }

 else if (U2222){
 ShowMessage("Error!!! ");

 }

}
//--

void __fastcall TForm1::Edit4Exit(TObject *Sender)

{ Button1->Enabled=false;
 if(!TryStrToFloat(Edit4->Text,Ub2)){

 // ShowMessage("Error!!! ");

 Edit10->Color=clRed;

 U22=true;
 //Lb1= double(0.01);

 // Form1->Edit1->Text=Lb1;

 226

 U2=false;

 U2222=false; Button8->Visible=true;
 }

 else {

 Ub2 =(double) StrToFloat(Form1->Edit4->Text);
 if (Ub2<=0 || Ub2>=1){

 U22=false;

 Edit10->Color=clRed;

 U222=true;
 U2=false;

 U2222=false; Button8->Visible=true;

 }
 else

 {

 U22=false;

 U222=false;
 U2=true;

 Edit10->Color=clGreen; Button8->Visible=false;

 if(Lb2>=Ub2){
 Edit10->Color=clRed; Button8->Visible=true;

 U2=false;

 U22=false;
 Edit10->Color=clRed;

 U222=false;

 U2222=true;

 }
 else {

 Edit10->Color=clGreen; Button8->Visible=false;

 U22=false;
 U222=false;

 U2=true;

 Edit10->Color=clGreen;
 U2222=false;

 }

 }

 }
 if (L1 && L2 && L3 && U1 && U2 && U3){

 Button1->Enabled=true;

 227

 }

 else{
 Button1->Enabled=false;

 }

}
//--

void __fastcall TForm1::Button10Click(TObject *Sender)

{

 if (L33){
 ShowMessage("Error!!!!");

 }

 else if (L333)
 {

 ShowMessage("Error!!!");

 }

}
//--

void __fastcall TForm1::EError(TObject *Sender)

{
 if (U33){

 ShowMessage("Error!!! ");

 }
 else if (U333)

 {

 ShowMessage("Error!!!)");

 }
 else if (U3333){

 ShowMessage("Error!!! ");

 }
}

//--

void __fastcall TForm1::Edit5Exit(TObject *Sender)
{ Button1->Enabled=false;

if(!TryStrToFloat(Edit5->Text,Lb3)){

 Edit11->Color=clRed;

 L33=true;
 L3=false; Button10->Visible=true;

 }

 228

 else {

 Lb3 =(double) StrToFloat(Form1->Edit5->Text);
 if (Lb3<=0 || Lb3>=1){

 L33=false;

 Edit11->Color=clRed; Button10->Visible=true;
 L333=true;

 L3=false;

 }

 else
 {

 L33=false;

 L333=false;
 L3=true;

 Edit11->Color=clGreen;Button10->Visible=false;

 Edit2->Enabled=true; if(Lb3>=Ub3){

 Edit12->Color=clRed; Button9->Visible=true;
 U3=false;

 U33=false;

 Edit12->Color=clRed;
 U333=false;

 U3333=true;

 }
 else {

 Edit12->Color=clGreen; Button9->Visible=false;

 U33=false;

 U333=false;
 U3=true;

 Edit12->Color=clGreen;

 U3333=false;
 }

 }

 }
 if (L1 && L2 && L3 && U1 && U2 && U3){

 Button1->Enabled=true;

 }

 else{
 Button1->Enabled=false;

 }

 229

}

//--
void __fastcall TForm1::Edit6Exit(TObject *Sender)

{ Button1->Enabled=false;

if(!TryStrToFloat(Edit6->Text,Ub3)){
 // ShowMessage("Error!!! ");

 Edit12->Color=clRed;

 U33=true;

 //Lb1= double(0.01);
 // Form1->Edit1->Text=Lb1;

 U3=false; U3333=false; Button9->Visible=true;

 }
 else {

 Ub3 =(double) StrToFloat(Form1->Edit6->Text);

 if (Ub3<=0 || Ub3>=1){

 U33=false;
 Edit12->Color=clRed; Button9->Visible=true;

 U333=true;

 U3=false; U3333=false;
 }

 else

 { U3333=false;
 U33=false;

 U333=false;

 U3=true;

 Edit12->Color=clGreen; Button9->Visible=false;
 if(Lb3>=Ub3){

 Edit12->Color=clRed; Button9->Visible=true;

 U3=false;
 U33=false;

 Edit12->Color=clRed;

 U333=false;
 U3333=true;

 }

 else {

 Edit12->Color=clGreen; Button9->Visible=false;
 U33=false;

 U333=false;

 230

 U3=true;

 Edit12->Color=clGreen;
 U3333=false;

 }

 }
 }

 if (L1 && L2 && L3 && U1 && U2 && U3){

 Button1->Enabled=true;

 }
 else{

 Button1->Enabled=false;

 }
}

//--

void __fastcall TForm1::ErError2(TObject *Sender)

{
if(Error1){

 ShowMessage("Немає точок перетину");

} else if (Error2){
 ShowMessage("Точок перетину не достатньо для

побудови підобласті (1 або 2 точки)");

}
}

//--

void __fastcall TForm1::Edit6Change(TObject *Sender)

{
Button4->Enabled=false;

}

//--
void __fastcall TForm1::Edit5Change(TObject *Sender)

{

Button4->Enabled=false;
}

//--

void __fastcall TForm1::Edit4Change(TObject *Sender)

{
Button4->Enabled=false;

}

 231

//--

void __fastcall TForm1::Edit3Change(TObject *Sender)
{

Button4->Enabled=false;

}
//--

void __fastcall TForm1::Edit2Change(TObject *Sender)

{

Button4->Enabled=false;
}

//--

void __fastcall TForm1::Edit1Change(TObject *Sender)
{

Button4->Enabled=false;

}

//--
void __fastcall TForm1::Button12Click(TObject *Sender)

{

Form1->PageControl1->ActivePage=TabSheet3;
}

//--

void __fastcall TForm1::Button15Click(TObject *Sender)
{ Button1Click(Form1); indexPoints=0;

 Button4Click(Form1); Button5->Enabled=false;

 Edit14->Color=clRed;

}
//--

void __fastcall TForm1::Button13Click(TObject *Sender)

{
Form1->PageControl1->ActivePage=TabSheet1;

}

//--

 232

ADDITION 2

PROGRAM LISTING

Basic procedures and functions for constructing an

experiment plan for a four-component mixture

procedure convert(a, b: vector1; var x1, x2, x3, x4: vector);
var

 i, j, g, n: Integer;

 k1, k2: mas;
begin

 k1[1, 1] := a[1];

 k1[1, 2] := a[2];
 k1[1, 3] := a[3];

 k1[1, 4] := 1 - (k1[1, 2] + k1[1, 1] + k1[1, 3]);

 k1[2, 1] := b[1];

 k1[2, 2] := a[2];
 k1[2, 3] := a[3];

 k1[2, 4] := 1 - (k1[2, 2] + k1[2, 1] + k1[2, 3]);

 k1[3, 1] := a[1];
 k1[3, 2] := b[2];

 k1[3, 3] := a[3];

 k1[3, 4] := 1 - (k1[3, 2] + k1[3, 1] + k1[3, 3]);
 k1[4, 1] := b[1];

 k1[4, 2] := b[2];

 k1[4, 3] := a[3];

 k1[4, 4] := 1 - (k1[4, 2] + k1[4, 1] + k1[4, 3]);
 k1[5, 1] := a[1];

 k1[5, 2] := a[2];

 k1[5, 3] := b[3];
 k1[5, 4] := 1 - (k1[5, 2] + k1[5, 1] + k1[5, 3]);

 k1[6, 1] := b[1];

 k1[6, 2] := a[2];

 k1[6, 3] := b[3];
 k1[6, 4] := 1 - (k1[6, 2] + k1[6, 1] + k1[6, 3]);

 k1[7, 1] := a[1];

 k1[7, 2] := b[2];
 k1[7, 3] := b[3];

 k1[7, 4] := 1 - (k1[7, 2] + k1[7, 1] + k1[7, 3]);

 233

 k1[8, 1] := b[1];

 k1[8, 2] := b[2];
 k1[8, 3] := b[3];

 k1[8, 4] := 1 - (k1[8, 2] + k1[8, 1] + k1[8, 3]);

 k1[9, 1] := a[1];
 k1[9, 2] := a[2];

 k1[9, 4] := a[4];

 k1[9, 3] := 1 - (k1[9, 2] + k1[9, 1] + k1[9, 4]);

 k1[10, 1] := b[1];
 k1[10, 2] := a[2];

 k1[10, 4] := a[4];

 k1[10, 3] := 1 - (k1[10, 2] + k1[10, 1] + k1[10, 4]);
 k1[11, 1] := a[1];

 k1[11, 2] := b[2];

 k1[11, 4] := a[4];

 k1[11, 3] := 1 - (k1[11, 2] + k1[11, 1] + k1[11, 4]);
 k1[12, 1] := b[1];

 k1[12, 2] := b[2];

 k1[12, 4] := a[4];
 k1[12, 3] := 1 - (k1[12, 2] + k1[12, 1] + k1[12, 4]);

 k1[13, 1] := a[1];

 k1[13, 2] := a[2];
 k1[13, 4] := b[4];

 k1[13, 3] := 1 - (k1[13, 2] + k1[13, 1] + k1[13, 4]);

 k1[14, 1] := b[1];

 k1[14, 2] := a[2];
 k1[14, 4] := b[4];

 k1[14, 3] := 1 - (k1[14, 2] + k1[14, 1] + k1[14, 4]);

 k1[15, 1] := a[1];
 k1[15, 2] := b[2];

 k1[15, 4] := b[4];

 k1[15, 3] := 1 - (k1[15, 2] + k1[15, 1] + k1[15, 4]);
 k1[16, 1] := b[1];

 k1[16, 2] := b[2];

 k1[16, 4] := b[4];

 k1[16, 3] := 1 - (k1[16, 2] + k1[16, 1] + k1[16, 4]);
 k1[17, 1] := a[1];

 k1[17, 3] := a[3];

 234

 k1[17, 4] := a[4];

 k1[17, 2] := 1 - (k1[17, 4] + k1[17, 1] + k1[17, 3]);
 k1[18, 1] := b[1];

 k1[18, 3] := a[3];

 k1[18, 4] := a[4];
 k1[18, 2] := 1 - (k1[18, 4] + k1[18, 1] + k1[18, 3]);

 k1[19, 1] := a[1];

 k1[19, 3] := b[3];

 k1[19, 4] := a[4];
 k1[19, 2] := 1 - (k1[19, 4] + k1[19, 1] + k1[19, 3]);

 k1[20, 1] := b[1];

 k1[20, 3] := b[3];
 k1[20, 4] := a[4];

 k1[20, 2] := 1 - (k1[20, 4] + k1[20, 1] + k1[20, 3]);

 k1[21, 1] := a[1];

 k1[21, 3] := a[3];
 k1[21, 4] := b[4];

 k1[21, 2] := 1 - (k1[21, 4] + k1[21, 1] + k1[21, 3]);

 k1[22, 1] := b[1];
 k1[22, 3] := a[3];

 k1[22, 4] := b[4];

 k1[22, 2] := 1 - (k1[22, 4] + k1[22, 1] + k1[22, 3]);
 k1[23, 1] := a[1];

 k1[23, 3] := b[3];

 k1[23, 4] := b[4];

 k1[23, 2] := 1 - (k1[23, 4] + k1[23, 1] + k1[23, 3]);
 k1[24, 1] := b[1];

 k1[24, 3] := b[3];

 k1[24, 4] := b[4];
 k1[24, 2] := 1 - (k1[24, 4] + k1[24, 1] + k1[24, 3]);

 k1[25, 2] := a[2];

 k1[25, 3] := a[3];
 k1[25, 4] := a[4];

 k1[25, 1] := 1 - (k1[25, 2] + k1[25, 4] + k1[25, 3]);

 k1[26, 2] := b[2];

 k1[26, 3] := a[3];
 k1[26, 4] := a[4];

 k1[26, 1] := 1 - (k1[26, 2] + k1[26, 4] + k1[26, 3]);

 235

 k1[27, 2] := a[2];

 k1[27, 3] := b[3];
 k1[27, 4] := a[4];

 k1[27, 1] := 1 - (k1[27, 2] + k1[27, 4] + k1[27, 3]);

 k1[28, 2] := b[2];
 k1[28, 3] := b[3];

 k1[28, 4] := a[4];

 k1[28, 1] := 1 - (k1[28, 2] + k1[28, 4] + k1[28, 3]);

 k1[29, 2] := a[2];
 k1[29, 3] := a[3];

 k1[29, 4] := b[4];

 k1[29, 1] := 1 - (k1[29, 2] + k1[29, 4] + k1[29, 3]);
 k1[30, 2] := b[2];

 k1[30, 3] := a[3];

 k1[30, 4] := b[4];

 k1[30, 1] := 1 - (k1[30, 2] + k1[30, 4] + k1[30, 3]);
 k1[31, 2] := a[2];

 k1[31, 3] := b[3];

 k1[31, 4] := b[4];
 k1[31, 1] := 1 - (k1[31, 2] + k1[31, 4] + k1[31, 3]);

 k1[32, 2] := b[2];

 k1[32, 3] := b[3];
 k1[32, 4] := b[4];

 k1[32, 1] := 1 - (k1[32, 2] + k1[32, 4] + k1[32, 3]);

 j := 0;

 for i := 1 to 32 do
 begin

 if (k1[i, 1] >= a[1]) and (k1[i, 1] <= b[1]) and (k1[i, 2] >=

a[2]) and (k1[i, 2] <= b[2]) and (k1[i, 3] >= a[3]) and (k1[i, 3] <=
b[3]) and (k1[i, 4] >= a[4]) and (k1[i, 4] <= b[4]) then

 begin

 j := j + 1;
 k2[j, 1] := k1[i, 1];

 k2[j, 2] := k1[i, 2];

 k2[j, 3] := k1[i, 3];

 k2[j, 4] := k1[i, 4];
 end;

 for n := j + 1 to 32 do

 236

 begin

 k2[n, 1] := 0;
 k2[n, 2] := 0;

 k2[n, 3] := 0;

 k2[n, 4] := 0;
 end;

 end;

 for g := 1 to 32 do

 begin
 x1[g] := k2[g, 1];

 x2[g] := k2[g, 2];

 x3[g] := k2[g, 3];
 x4[g] := k2[g, 4];

 end;

end;

procedure grani(x1, x2, x3, x4: vector; var ox1, ox2, ox3,
ox4: vector);

type

 PMyList = ^AList;
 AList = record

 R1: real;

 R2: real;
 R3: real;

 R4: real;

 end;

var
 MyList: TList;

 ARecord: PMyList;

 i, i1, i2, i3, j, k, prov_sovp, count: Integer;
 sumx1, sumx2, sumx3, sumx4, serx1, serx2, serx3, serx4:

Real;

begin
 MyList := TList.create;

 sumx1 := 0;

 serx1 := 0;

 count := 0;
 sumx2 := 0;

 serx2 := 0;

 237

 sumx3 := 0;

 serx3 := 0;
 sumx4 := 0;

 serx4 := 0;

 for i := 1 to 32 do
 begin

 prov_sovp := 0;

 if i <> 1 then

 begin
 for k := 1 to i - 1 do

 begin

 if (x1[i] = x1[k]) then
 prov_sovp := 1;

 end;

 end;

 if ((i = 1) or (prov_sovp = 0)) then
 begin

 if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and

(x4[i] <> 0)) then
 begin

 for j := i to 32 do

 begin
 if (x1[i] = x1[j + 1]) then

 begin

 sumx1 := sumx1 + x1[j + 1];

 sumx2 := sumx2 + x2[j + 1];
 sumx3 := sumx3 + x3[j + 1];

 sumx4 := sumx4 + x4[j + 1];

 count := count + 1;
 end;

 end;

 if (count <> 0) then
 begin

 sumx1 := sumx1 + x1[i];

 sumx2 := sumx2 + x2[i];

 sumx3 := sumx3 + x3[i];
 sumx4 := sumx4 + x4[i];

 serx1 := sumx1 / (count + 1);

 238

 ox1[i] := serx1;

 serx2 := sumx2 / (count + 1);
 ox2[i] := serx2;

 serx3 := sumx3 / (count + 1);

 ox3[i] := serx3;
 serx4 := sumx4 / (count + 1);

 ox4[i] := serx4;

 New(ARecord);

 ARecord^.R1 := ox1[i];
 ARecord^.R2 := ox2[i];

 ARecord^.R3 := ox3[i];

 ARecord^.R4 := ox4[i];
 MyList.Add(ARecord);

 end;

 sumx1 := 0;

 serx1 := 0;
 count := 0;

 sumx2 := 0;

 serx2 := 0;
 sumx3 := 0;

 serx3 := 0;

 sumx4 := 0;
 serx4 := 0;

 end;

 end;

 end;
 for i1 := 1 to 32 do

 begin

 prov_sovp := 0;
 if i1 <> 1 then

 begin

 for k := 1 to i1 - 1 do
 begin

 if (x2[i1] = x2[k]) then

 prov_sovp := 1;

 end;
 end;

 if ((i1 = 1) or (prov_sovp = 0)) then

 239

 begin

 if ((x1[i1] <> 0) and (x2[i1] <> 0) and (x3[i1] <> 0) and

(x4[i1] <> 0)) then

 begin
 for j := i1 to 32 do

 begin

 if (x2[i1] = x2[j + 1]) then

 begin
 sumx1 := sumx1 + x1[j + 1];

 sumx2 := sumx2 + x2[j + 1];

 sumx3 := sumx3 + x3[j + 1];
 sumx4 := sumx4 + x4[j + 1];

 count := count + 1;

 end;

 end;
 if (count <> 0) then

 begin

 sumx1 := sumx1 + x1[i1];
 sumx2 := sumx2 + x2[i1];

 sumx3 := sumx3 + x3[i1];

 sumx4 := sumx4 + x4[i1];
 serx1 := sumx1 / (count + 1);

 ox1[i1] := serx1;

 serx2 := sumx2 / (count + 1);

 ox2[i1] := serx2;
 serx3 := sumx3 / (count + 1);

 ox3[i1] := serx3;

 serx4 := sumx4 / (count + 1);
 ox4[i1] := serx4;

 New(ARecord);

 ARecord^.R1 := ox1[i1];
 ARecord^.R2 := ox2[i1];

 ARecord^.R3 := ox3[i1];

 ARecord^.R4 := ox4[i1];

 MyList.Add(ARecord);
 end;

 sumx1 := 0;

 240

 serx1 := 0;

 count := 0;
 sumx2 := 0;

 serx2 := 0;

 sumx3 := 0;
 serx3 := 0;

 sumx4 := 0;

 serx4 := 0;

 end;
 end;

 end;

 for i2 := 1 to 32 do
 begin

 prov_sovp := 0;

 if i2 <> 1 then

 begin
 for k := 1 to i2 - 1 do

 begin

 if (x3[i2] = x3[k]) then
 prov_sovp := 1;

 end;

 end;
 if ((i2 = 1) or (prov_sovp = 0)) then

 begin

 if ((x1[i2] <> 0) and (x2[i2] <> 0) and (x3[i2] <> 0) and

(x4[i2] <> 0)) then
 begin

 for j := i2 to 32 do

 begin
 if (x3[i2] = x3[j + 1]) then

 begin

 sumx1 := sumx1 + x1[j + 1];
 sumx2 := sumx2 + x2[j + 1];

 sumx3 := sumx3 + x3[j + 1];

 sumx4 := sumx4 + x4[j + 1];

 count := count + 1;
 end;

 end;

 241

 if (count <> 0) then

 begin
 sumx1 := sumx1 + x1[i2];

 sumx2 := sumx2 + x2[i2];

 sumx3 := sumx3 + x3[i2];
 sumx4 := sumx4 + x4[i2];

 serx1 := sumx1 / (count + 1);

 ox1[i2] := serx1;

 serx2 := sumx2 / (count + 1);
 ox2[i2] := serx2;

 serx3 := sumx3 / (count + 1);

 ox3[i2] := serx3;
 serx4 := sumx4 / (count + 1);

 ox4[i2] := serx4;

 New(ARecord);

 ARecord^.R1 := ox1[i2];
 ARecord^.R2 := ox2[i2];

 ARecord^.R3 := ox3[i2];

 ARecord^.R4 := ox4[i2];
 MyList.Add(ARecord);

 end;

 sumx1 := 0;
 serx1 := 0;

 count := 0;

 sumx2 := 0;

 serx2 := 0;
 sumx3 := 0;

 serx3 := 0;

 sumx4 := 0;
 serx4 := 0;

 end;

 end;
 end;

 for i3 := 1 to 32 do

 begin

 prov_sovp := 0;
 if i3 <> 1 then

 begin

 242

 for k := 1 to i3 - 1 do

 begin
 if (x4[i3] = x4[k]) then

 prov_sovp := 1;

 end;
 end;

 if ((i3 = 1) or (prov_sovp = 0)) then

 begin

 if ((x1[i3] <> 0) and (x2[i3] <> 0) and (x3[i3] <> 0) and
(x4[i3] <> 0)) then

 begin

 for j := i3 to 32 do
 begin

 if (x4[i3] = x4[j + 1]) then

 begin

 sumx1 := sumx1 + x1[j + 1];
 sumx2 := sumx2 + x2[j + 1];

 sumx3 := sumx3 + x3[j + 1];

 sumx4 := sumx4 + x4[j + 1];
 count := count + 1;

 end;

 end;
 if (count <> 0) then

 begin

 sumx1 := sumx1 + x1[i3];

 sumx2 := sumx2 + x2[i3];
 sumx3 := sumx3 + x3[i3];

 sumx4 := sumx4 + x4[i3];

 serx1 := sumx1 / (count + 1);
 ox1[i3] := serx1;

 serx2 := sumx2 / (count + 1);

 ox2[i3] := serx2;
 serx3 := sumx3 / (count + 1);

 ox3[i3] := serx3;

 serx4 := sumx4 / (count + 1);

 ox4[i3] := serx4;
 New(ARecord);

 ARecord^.R1 := ox1[i3];

 243

 ARecord^.R2 := ox2[i3];

 ARecord^.R3 := ox3[i3];
 ARecord^.R4 := ox4[i3];

 MyList.Add(ARecord);

 end;
 sumx1 := 0;

 serx1 := 0;

 count := 0;

 sumx2 := 0;
 serx2 := 0;

 sumx3 := 0;

 serx3 := 0;
 sumx4 := 0;

 serx4 := 0;

 end;

 end;
 end;

 for j := 0 to (MyList.Count - 1) do

 begin
 ARecord := MyList.Items[j];

 ox1[j+1]:= ARecord^.R1;

 ox2[j+1]:= ARecord^.R2;
 ox3[j+1]:= ARecord^.R3;

 ox4[j+1]:= ARecord^.R4;

 end;

end;
procedure rebra(x1, x2, x3, x4: vector; var dx1, dx2, dx3,

dx4: vector);

type
 PMyList = ^AList;

 AList = record

 R1: real;
 R2: real;

 R3: real;

 R4: real;

 end;
var

 MyList: TList;

 244

 ARecord: PMyList;

 i, i1, i2, i3, j, count: Integer;
 sumx1, sumx2, sumx3, sumx4, serx1, serx2, serx3, serx4:

Real;

begin
 MyList := TList.create;

 sumx1 := 0;

 serx1 := 0;

 count := 0;
 sumx2 := 0;

 serx2 := 0;

 sumx3 := 0;
 serx3 := 0;

 sumx4 := 0;

 serx4 := 0;

 for i := 1 to 32 do
 begin

 if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and

(x4[i] <> 0)) then
 begin

 for j := i to 32 do

 begin
 if (x1[i] = x1[j + 1])then begin

 if (x2[i]=x2[j+1]) then

 begin

 sumx1 := sumx1 + x1[j + 1];
 sumx2 := sumx2 + x2[j + 1];

 sumx3 := sumx3 + x3[j + 1];

 sumx4 := sumx4 + x4[j + 1];
 count := count + 1;

 end;

 if (x3[i]=x3[j+1]) then
 begin

 sumx1 := sumx1 + x1[j + 1];

 sumx2 := sumx2 + x2[j + 1];

 sumx3 := sumx3 + x3[j + 1];
 sumx4 := sumx4 + x4[j + 1];

 count := count + 1;

 245

 end;

 if (x4[i]=x4[j+1]) then
 begin

 sumx1 := sumx1 + x1[j + 1];

 sumx2 := sumx2 + x2[j + 1];
 sumx3 := sumx3 + x3[j + 1];

 sumx4 := sumx4 + x4[j + 1];

 count := count + 1;

 end;
 end;

 if (count <> 0) then

 begin
 sumx1 := sumx1 + x1[i];

 sumx2 := sumx2 + x2[i];

 sumx3 := sumx3 + x3[i];

 sumx4 := sumx4 + x4[i];
 serx1 := sumx1 / (count + 1);

 dx1[i] := serx1;

 serx2 := sumx2 / (count + 1);
 dx2[i] := serx2;

 serx3 := sumx3 / (count + 1);

 dx3[i] := serx3;
 serx4 := sumx4 / (count + 1);

 dx4[i] := serx4;

 New(ARecord);

 ARecord^.R1 := dx1[i];
 ARecord^.R2 := dx2[i];

 ARecord^.R3 := dx3[i];

 ARecord^.R4 := dx4[i];
 MyList.Add(ARecord);

 end;

 sumx1 := 0;
 serx1 := 0;

 count := 0;

 sumx2 := 0;

 serx2 := 0;
 sumx3 := 0;

 serx3 := 0;

 246

 sumx4 := 0;

 serx4 := 0;
 end;

 end;

 end;
 for i1 := 1 to 32 do

 begin

 if ((x1[i1] <> 0) and (x2[i1] <> 0) and (x3[i1] <> 0) and

(x4[i1] <> 0)) then
 begin

 for j := i1 to 32 do

 begin
 if (x2[i1] = x2[j + 1]) then

 begin

 if (x3[i1]=x3[j+1])then

 begin
 sumx1 := sumx1 + x1[j + 1];

 sumx2 := sumx2 + x2[j + 1];

 sumx3 := sumx3 + x3[j + 1];
 sumx4 := sumx4 + x4[j + 1];

 count := count + 1;

 end;
 if (x4[i1]=x4[j+1])then

 begin

 sumx1 := sumx1 + x1[j + 1];

 sumx2 := sumx2 + x2[j + 1];
 sumx3 := sumx3 + x3[j + 1];

 sumx4 := sumx4 + x4[j + 1];

 count := count + 1;
 end;

 end;

 if (count <> 0) then
 begin

 sumx1 := sumx1 + x1[i1];

 sumx2 := sumx2 + x2[i1];

 sumx3 := sumx3 + x3[i1];
 sumx4 := sumx4 + x4[i1];

 serx1 := sumx1 / (count + 1);

 247

 dx1[i1] := serx1;

 serx2 := sumx2 / (count + 1);
 dx2[i1] := serx2;

 serx3 := sumx3 / (count + 1);

 dx3[i1] := serx3;
 serx4 := sumx4 / (count + 1);

 dx4[i1] := serx4;

 New(ARecord);

 ARecord^.R1 := dx1[i1];
 ARecord^.R2 := dx2[i1];

 ARecord^.R3 := dx3[i1];

 ARecord^.R4 := dx4[i1];
 MyList.Add(ARecord);

 end;

 sumx1 := 0;

 serx1 := 0;
 count := 0;

 sumx2 := 0;

 serx2 := 0;
 sumx3 := 0;

 serx3 := 0;

 sumx4 := 0;
 serx4 := 0;

 end;

 end;

 end;
 for i2 := 1 to 32 do

 begin

 if ((x1[i2] <> 0) and (x2[i2] <> 0) and (x3[i2] <> 0) and
(x4[i2] <> 0)) then

 begin

 for j := i2 to 32 do
 begin

 if (x3[i2] = x3[j + 1]) then

 begin

 if (x4[i2]=x4[j+1]) then
 begin

 sumx1:= sumx1 + x1[j + 1];

 248

 sumx2:= sumx2 + x2[j + 1];

 sumx3:= sumx3 + x3[j + 1];
 sumx4:= sumx4 + x4[j + 1];

 count:= count + 1;

 end;
 end;

 if (count <> 0) then

 begin

 sumx1 := sumx1 + x1[i2];
 sumx2 := sumx2 + x2[i2];

 sumx3 := sumx3 + x3[i2];

 sumx4 := sumx4 + x4[i2];
 serx1 := sumx1 / (count + 1);

 dx1[i2] := serx1;

 serx2 := sumx2 / (count + 1);

 dx2[i2] := serx2;
 serx3 := sumx3 / (count + 1);

 dx3[i2] := serx3;

 serx4 := sumx4 / (count + 1);
 dx4[i2] := serx4;

 New(ARecord);

 ARecord^.R1 := dx1[i2];
 ARecord^.R2 := dx2[i2];

 ARecord^.R3 := dx3[i2];

 ARecord^.R4 := dx4[i2];

 MyList.Add(ARecord);
 end;

 sumx1 := 0;

 serx1 := 0;
 count := 0;

 sumx2 := 0;

 serx2 := 0;
 sumx3 := 0;

 serx3 := 0;

 sumx4 := 0;

 serx4 := 0;
 end;

 end;

 249

 end;

 for j := 0 to (MyList.Count - 1) do
 begin

 ARecord := MyList.Items[j];

 dx1[j+1]:= ARecord^.R1;
 dx2[j+1]:= ARecord^.R2;

 dx3[j+1]:= ARecord^.R3;

 dx4[j+1]:= ARecord^.R4;

 end;
end;

procedure centr(x1, x2, x3, x4: vector; var cx1, cx2, cx3,

cx4:real);
var

 i:Integer;

 count,sum1,sum2,sum3,sum4:Real;

begin
 count:=0; sum1:=0; sum2:=0; sum3:=0; sum4:=0;

 for i:=1 to 32 do begin

 if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i]
<> 0)) then

 begin

 count:=count+1;
 sum1:=sum1+x1[i];

 sum2:=sum2+x2[i];

 sum3:=sum3+x3[i];

 sum4:=sum4+x4[i];
 end;

 if count <> 0 then

 begin
 cx1:=sum1/count;

 cx2:=sum2/count;

 cx3:=sum3/count;
 cx4:=sum4/count;

 end;

 end;

end;
procedure vids_centr (x1,x2,x3,x4:vector;

cx1,cx2,cx3,cx4:Real; a,b:vector1; var dc:vector);

 250

 var i,n:Integer;

 begin
 for i:=1 to 32 do

 begin

 if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i]
<> 0)) then

 begin

 dc[i]:=Sqrt(Sqr((x1[i]-cx1)/(b[1]-a[1]))+Sqr((x2[i]-

cx2)/(b[2]-a[2]))+Sqr((x3[i]-cx3)/(b[3]-a[3]))+Sqr((x4[i]-cx4)/(b[4]-
a[4])));

 end;

 for n:=i+1 to 32 do begin
 dc[n]:=0;

 end;

 end;

 end;
 procedure convert2 (x1, x2, x3, x4, dcv, dx1, dx2, dx3, dx4,

dcr, ox1, ox2, ox3, ox4, dcg:vector; var tx1, tx2, tx3, tx4, dc:vector);

 type
 PMyList = ^AList;

 AList = record

 R1: real; R2: real; R3: real; R4: real; R5: Real;
 end;

var i,j:integer;

 MyList: TList;

 ARecord: PMyList;
 begin

 MyList := TList.create;

 for i:=1 to 32 do
 begin

 if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and (x4[i]

<> 0) and (dcv[i]<>0)) then
 begin

 New(ARecord);

 ARecord^.R1 := x1[i];

 ARecord^.R2 := x2[i];
 ARecord^.R3 := x3[i];

 ARecord^.R4 := x4[i];

 251

 ARecord^.R5 := dcv[i];

 MyList.Add(ARecord);
 end;

 if ((dx1[i] <> 0) and (dx2[i] <> 0) and (dx3[i] <> 0) and

(dx4[i] <> 0)and (dcr[i]<>0)) then
 begin

 New(ARecord);

 ARecord^.R1 := dx1[i];

 ARecord^.R2 := dx2[i];
 ARecord^.R3 := dx3[i];

 ARecord^.R4 := dx4[i];

 ARecord^.R5 := dcr[i];
 MyList.Add(ARecord);

 end;

 if ((ox1[i] <> 0) and (ox2[i] <> 0) and (ox3[i] <> 0) and

(ox4[i] <> 0)and (dcr[i]<>0)) then
 begin

 New(ARecord);

 ARecord^.R1 := ox1[i];
 ARecord^.R2 := ox2[i];

 ARecord^.R3 := ox3[i];

 ARecord^.R4 := ox4[i];
 ARecord^.R5 := dcg[i];

 MyList.Add(ARecord);

 end;

 end;
 for j := 0 to (MyList.Count-1) do

 begin

 ARecord := MyList.Items[j];
 tx1[j+1]:= ARecord^.R1;

 tx2[j+1]:= ARecord^.R2;

 tx3[j+1]:= ARecord^.R3;
 tx4[j+1]:= ARecord^.R4;

 dc[j+1]:= ARecord^.R5;

 end;

 end;
 procedure norm (dc:vector; var dn:real);

 var i,count:Integer;

 252

 sum,dn1,dn2:Real;

 begin
 count:=0;

 for i:=1 to 32 do

 begin
 if (dc[i]<>0) then

 begin

 count:=count+1;

 sum:=sum+dc[i];
 end;

 end;

 dn1:=sum/count;
 dn2:=sqrt(2*dn1);

 dn:=(dn1+dn2)/2;

 end;

 procedure max_d (x1,x2,x3,x4,dc:vector; var max:integer);
 var i:integer;

 begin

 for i:=1 to 32 do
 begin

 if ((x1[i] <> 0) and (x2[i] <> 0) and (x3[i] <> 0) and

(x4[i] <> 0) and (dc[i]<>0)) then
 begin

 if dc[i] > dc[max] then

 max := i;

 end;
 end;

 end;

 procedure vibir_tochok (tx1,tx2,tx3,tx4,dc:vector; dn:Real;
var px1,px2,px3,px4:vector);

 type

 PMyList = ^AList;
 AList = record

 R1: real; R2: real; R3: real; R4: real;

 end;

 var k1,i1,k,j,i,max:Integer;
 dc1,dc2:vector;

 dcc,dc11,dc22,sx1,sx2,sx3,sx4:Real;

 253

 MyList: TList;

 ARecord: PMyList;
 begin

 MyList := TList.create;

 j:=1;
 max_d(tx1,tx2,tx3,tx4,dc,max);

 px1[j]:=tx1[max]; px2[j]:=tx2[max]; px3[j]:=tx3[max];

px4[j]:=tx4[max];

 tx1[max]:=0; tx2[max]:=0; tx3[max]:=0; tx4[max]:=0;
dc[max]:=0;

 max_d(tx1,tx2,tx3,tx4,dc,max);

 px1[j+1]:=tx1[max]; px2[j+1]:=tx2[max];
px3[j+1]:=tx3[max]; px4[j+1]:=tx4[max];

 tx1[max]:=0; tx2[max]:=0; tx3[max]:=0; tx4[max]:=0;

dc[max]:=0;

 for i:=1 to 32 do begin
 if ((tx1[i] <> 0) and (tx2[i] <> 0) and (tx3[i] <> 0) and

(tx4[i] <> 0) and (dc[i]<>0)) then

 begin
 vids_centr

(tx1,tx2,tx3,tx4,px1[1],px2[1],px3[1],px4[1],a,b,dc1);

 vids_centr
(tx1,tx2,tx3,tx4,px1[2],px2[2],px3[2],px4[2],a,b,dc2);

 end;

 end;

 for k1:=31 downto 1 do
 for k := 1 to k1 do

 begin

 if (dc[k]<dc[k+1]) then
 begin

 sx1:=tx1[k+1]; sx2:=tx2[k+1]; sx3:=tx3[k+1];

sx4:=tx4[k+1]; dc11:=dc1[k+1]; dc22:=dc2[k+1]; dcc:=dc[k+1];
 tx1[k+1]:=tx1[k]; tx2[k+1]:=tx2[k]; tx3[k+1]:=tx3[k];

tx4[k+1]:= tx4[k]; dc1[k+1]:=dc1[k]; dc2[k+1]:=dc2[k];

dc[k+1]:=dc[k];

 tx1[k]:=sx1; tx2[k]:=sx2; tx3[k]:=sx3; tx4[k]:=sx4;
dc1[k]:=dc11; dc2[k]:=dc22; dc[k]:=dcc;

 end;

 254

 end;

 for i1:=1 to 32 do begin
 if ((dc1[i1]>1.0019) and (dc2[i1]>1.0019)) then begin

 New(ARecord);

 ARecord^.R1 := tx1[i1];
 ARecord^.R2 := tx2[i1];

 ARecord^.R3 := tx3[i1];

 ARecord^.R4 := tx4[i1];

 MyList.Add(ARecord);
 end;

 end;

 for j := 0 to (MyList.Count-1) do
 begin

 ARecord := MyList.Items[j];

 px1[j+3]:= ARecord^.R1;

 px2[j+3]:= ARecord^.R2;
 px3[j+3]:= ARecord^.R3;

 px4[j+3]:= ARecord^.R4;

 end;
 for j := 4 to 14 do

 begin

 px1[j]:= px1[j];
 px2[j]:=px2[j];

 px3[j]:=px3[j];

 px4[j]:=px4[j];

 end;
 for j := 15 to 32 do

 begin

 px1[j]:= 0;
 px2[j]:=0;

 px3[j]:=0;

 px4[j]:=0;
 end;

 end;

procedure TForm1.Button1Click(Sender: TObject);

begin
 a[1] := StrToFloat(Edit1.Text);

 a[2] := StrToFloat(Edit3.Text);

 255

 a[3] := StrToFloat(Edit5.Text);

 a[4] := StrToFloat(Edit7.Text);
 b[1] := StrToFloat(Edit2.Text);

 b[2] := StrToFloat(Edit4.Text);

 b[3] := StrToFloat(Edit6.Text);
 b[4] := StrToFloat(Edit8.Text);

 convert(a, b, x1, x2, x3, x4);

 grANI(x1, x2, x3, x4, ox1, ox2, ox3, ox4);

 rebra(x1, x2, x3, x4, dx1, dx2, dx3, dx4);
 centr(x1, x2, x3, x4, cx1, cx2, cx3, cx4);

 vids_centr(x1,x2,x3,x4,cx1,cx2,cx3,cx4,a,b,dcv);

 vids_centr(dx1,dx2,dx3,dx4,cx1,cx2,cx3,cx4,a,b,dcr);
 vids_centr(ox1,ox2,ox3,ox4,cx1,cx2,cx3,cx4,a,b,dcg);

convert2(x1,x2,x3,x4,dcv,dx1,dx2,dx3,dx4,dcr,ox1,ox2,ox3,

ox4,dcg,tx1,tx2,tx3,tx4,dc);

 norm (dc,dn);
 vibir_tochok (tx1,tx2,tx3,tx4,dc,dn,px1,px2,px3,px4);

 end;

procedure TForm1.Button2Click(Sender: TObject);
 var j:Integer;

begin

 form2.Show;
 for j:=0 to 31 do begin

 form2.StringGrid1.Cells[0, j] := floattostr(px1[j+1]);

 form2.StringGrid1.Cells[1, j] := floattostr(px2[j+1]);

 form2.StringGrid1.Cells[2, j] := floattostr(px3[j+1]);
 form2.StringGrid1.Cells[3, j] := floattostr(px4[j+1]);

 end;

 Form2.edt1.Text:=FloatToStr(cx1);
 Form2.edt2.Text:=FloatToStr(cx2);

 Form2.edt3.Text:=FloatToStr(cx3);

 Form2.edt4.Text:=FloatToStr(cx4);
end;

end.

 256

CONTENTS

INTRODUCTION ……………………………………… 3

CHAPTER 1. COMPOSITE NANOFILLED

SYNTHETIC FIBRE MATERIALS.................................

 10

 1.1. Synthetic classical fibers and threads filled with

nanoadditives of various chemical nature.........................

12

 1.2. Nanofilled composite yarns and fine-fiber materials

from melts of polymer blends..

 17

 1.2.1. Nanofilled composite threads with microfibrillar

structure..

20

 1.2.2. Nanofilled fine-fiber materials derived from
microfibrillar composites...

 31

 1.2.2.1. Nanofilled complex microfibrillar

threads..

 34
 1.2.2.2. Nonwoven materials made of ultrafine nanofilled
fibers...

 40

CHAPTER 2. SOFTWARE FOR MATHEMATICAL

EXPERIMENTAL PLANNING AND OPTIMIZATION

OF THE COMPOSITION OF MULTICOMPONENT

SYSTEMS ………………………………………………

 52

 2.1. Basic concepts of the mathematical design of

experiments method..

 54

 2.1.1. Factors, optimization parameters and models……… 54

 2.2. Mathematical planning of an experiment................. 60

 2.2.1. Determination of regression coefficients by the least
squares method..

 61

 2.2.2. Model adequacy checking... 66

 2.2.3. Full and fractional factor experiments...................... 68

2.3. Planning an experiment on composition–property

diagrams...

 73

 2.3.1. Simplex grid plans... 73
 2.3.1.1. Planning with a preliminary transformation of the

simplex sub-area...

 77

 2.3.2. Simplex-centroid plans... 79

 257

 2.4. Optimization of the composition of multicomponent

systems …………………………………………………

 81

2.5. Software for planning experiments, developing

mathematical models, and optimizing the composition of

multicomponent systems………………………………..

 90

 2.5.1. Software for constructing an experimental design for

ternary mixture systems..

 90
 2.5.1.1. Experimental plan for ternary systems with

incommensurable component contents...

 99
 2.5.2. Software for constructing an experimental design for

four-component mixture systems..

 107
 2.5.2.1. Computer-aided planning of experiments and

optimization of composition composition to obtain microfibrillar

filaments with improved properties..

 115

REFERENCES ………………………………………..… 138

ADDITION 1. PROGRAM LISTING. Basic procedures

and functions for implementing interactive experiment

planning for a ternary mixture …………………………..

149

ADDITION 2. PROGRAM LISTING. Basic procedures

and functions for constructing an experimental design for

a four-component mixture …………………………….…

232

 258

Резанова Вікторія Георгіївна,

 Резанова Наталія Михайлівна

ОПТИМІЗАЦІЯ СКЛАДУ

БАГАТОКОМПОНЕНТНИХ СИСТЕМ:
ДОСЛІДЖЕННЯ ТА ПРОГРАМНЕ

ЗАБЕЗПЕЧЕННЯ

Редактор Резанова В.Г.

Дизайн та верстка авторські

Формат 60*84/16

Папір офсетний 80гр/м2. Друк цифровий. Гарнітура Times New Roman

Умовн.-друк. арк. 16 Обл.- вид. арк. 5,9

Замовлення № 0520-0070

Підписано до друку 15.05.2025 р.

ТОВ «Видавничий дім «АртЕк»

04050, м. Київ, вул. Юрія Іллєнка, буд. 63

Тел.. 099 552 15 04 ph-artek@ukr.net

www.book-on-demand.com.ua

Свідоцтво про внесення суб’єкта видавничої прави

ДК №4779 від 15.10.14р.

mailto:artek@ukr.net

	8. Chen J., Liu B., Gao X., Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 2018. Vol.8. P. 28048-28085.
	23. Soares da Silva J.P., Soares B. G., Silva A.A. , Livi S. Double Percolation of Melt-Mixed PS/PBAT Blends Loaded With Carbon Nanotube: Effect of Molding Temperature and the Non-covalent Functionalization of the Filler by Ionic Liquid. Fron...
	29. Zhu B., Bai T., Wang P., Wang Y., Liu Ch. , Shen Ch. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stabilityInt. J...

