УДК 678.745.32

ВЛИЯНИЕ ПРИРОДЫ КИСЛОТНОГО COMOHOMEPA НА ГОМОФАЗНЫЙ СИНТЕЗ ТЕРСОПОЛИМЕРОВ АКРИЛОНИТРИЛА

А.Г. ХАРИТОНОВИЧ, Л.А. ЩЕРБИНА, О.Н. ОСИПЕНКО, З.А. ФИЛИППЕНКО, А.Я. ГУЗИКОВ

Могилевский государственный университет продовольствия (Беларусь)

Изучена кинетика синтеза волокнообразующих терсополимеров акрилонитрила в диметилформамиде. Показано влияние проироды третьего кислотного сомономера на динамику синтеза терсополимеров акрилонитрила

В мировом производстве синтетических волокон волокна на основе сополимеров акрилонитрила (АН) занимают почетное третье место, уступая лишь полиэфирным и полиамидным. Доля выпуска акриловых волокон составляет 5% от всех видов синтетических волокон. Из волокон, получаемых по растворной технологии, эти волокна являются лидерами.

Гомополиакрилонитрил не нашел широкого промышленного распространения для производства полиакрилонитрильных (ПАН) волокон из-за сложностей дальнейшей переработки гомополимера. При получении волокнообразующего сополимера АН в настоящий момент используется мономерная композиция, состоящая примерно из 91 % АН в качестве основного мономера, 6–8 % метилакрилата (МА) или винилацетата для улучшения потребительских физико-механических свойств ПАН волокна и 1–2 % кислотного сомономера, необходимого для придания волокну накрашиваемости красителями. В качестве таких кислотных сомономеров подходят виниловые соединения, имеющие функциональные группы кислотного характера.

Постановка задания

Сегодня большинство предприятий по получению полиакрилонитрильных волокон текстильного назначения используют в качестве третьего кислотного сомономера сульфосодержащее соединение 2-акриламид-2-метилпропансульфокислоту (АМПС). Однако при получении прекурсоров углеродных волокон вместо сульфосодержащих лучше подходят карбоксилсодержащие мономеры. В качестве такого сомономера можно использовать итаконовую кислоту (ИтК). Варьированием содержания карбоксилсодержащего компонента можно управлять протеканием процесса термоокисления ПАН волокон при получении из них углеродных волокон. Отсутствие данных о влиянии на динамику синтеза волокнообразующих терсополимеров АН в ДМФ замены АМПС на ИтК потребовало проведения рассмотренной в данной статье серии работ.

Результаты и их обсуждение

С целью уточнения влияния на протекание гомофазного синтеза сополимеров АН замены АМПС на ИтК была поставлена серия экспериментальных работ, в ходе которых моделировались условия получения волокнообразующих сополимеров АН в промышленных условиях. Сначала при температуре 70°С была изучена кинетика синтеза в ДМФ терсополимеров АН, содержащих от 1 до 7 % (масс.) АМПС (рис. 1). Степень конверсии мономеров определялась гравиметрическим методом.

Было установлено, что с повышением содержания АМПС с 1 до 7 % (от массы мономеров) динамика синтеза незначительно интенсифицируется, а индукционный период процесса уменьшается. Это можно объяснить влиянием звеньев АМПС на реакционную способность растущих макрорадикалов.

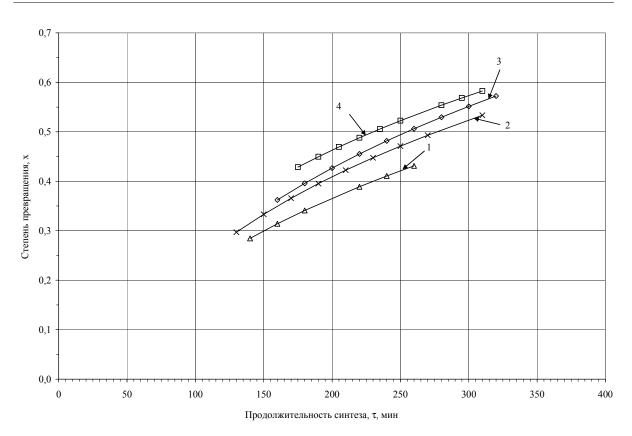


Рис. 1. Динамика синтеза поли[АН-со-МА-со-АМПС] в ДМФ при различном содержании АМПС

I – поли[AH(91)-со-MA(8)-со-AMПС(1)]; 2– поли[AH(89)-со-MA(8)-со-AMПС(3)];

3 – поли[АН(87)-со-МА(8)-со-АМПС(5)]; 4 – поли[АН(85)-со-МА(8)-со-АМПС(7)]

Для сравнения был проведен синтез терсополимера акрилонитрила с итаконовой кислотой. Данные, представленные на рис. 2, свидетельствуют о том, что с повышением содержания ИтК с 1% до 7% индукционный период синтеза увеличивается.

В научно-технической литературе отсутствует систематическая информация о влиянии композиционного мономерного состава на динамику синтеза поли(АН-со-МА-со-ИтК) в ДМФ, однако имеется информация о том, что мономеры, содержащие карбоксильные группы, могут обладать ингибирующим действием на протекание синтеза сополимеров акрилонитрила. В случае ИтК эффект ингибирования может быть связан с наличием у ИтК двух больших заместителей (стерический эффект), обладающих к тому же электроакцепторными свойствами.

Для оценки влияния изменения содержания ИтК на свойства поли(АН-со-МА-со-ИтК) методом капиллярной вискозиметрии в ДМ Φ были определены значения характеристических вязкостей синтезированных терсополимеров, содержащих от 1 до 7 % (масс.) ИтК (рис. 3).

Показано (рис. 3) незначительное увеличение молекулярной массы с увеличением содержания кислотного сомономера в терсополимере. Такое изменение вязкостных свойств разбавленных растворов скорее всего вызвано не истинным увеличением молекулярной массы, а может быть объяснено увеличением проявления полиэлектролитного эффекта по мере возрастания доли ионогенного сомономера в полимере.

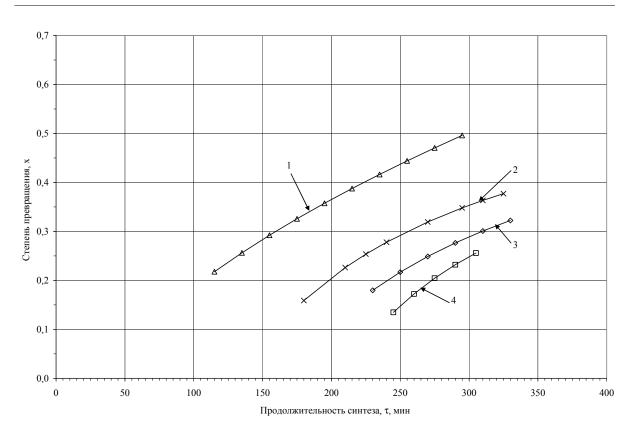


Рис. 2. Динамика синтеза поли[АН-со-МА-со-ИтК] в ДМФ при различном содержании ИтК I – поли[АН(91)-со-МА(8)-со-ИтК(1)]; 2 – поли[АН(89)-со-МА(8)-со-ИтК(3)]; 3 – поли[АН(87)-со-МА(8)-со-ИтК(5)]; 4 – поли[АН(85)-со-МА(8)-со-ИтК(7)]

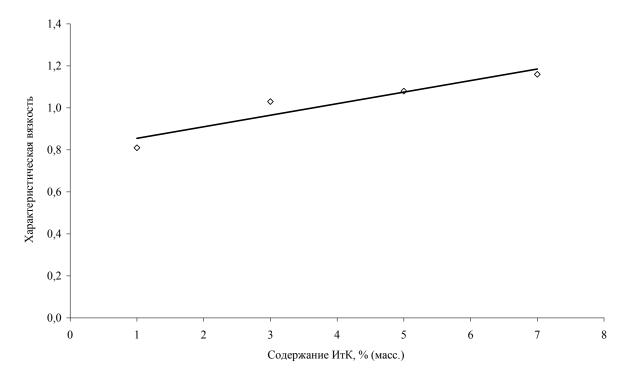


Рис.3. Зависимость приведенной вязкости поли(АН-со-МА-со-ИтК) от содержания ИтК

Обсуждая полученные данные следует отметить, что ингибирующее влияние карбоксилсодержащего кислотного сомономера на кинетику синтеза сополимеров АН может быть объяснено с позиций образования ИтК концевых малоактивных свободно-радикальных центров. В таких свободно-радикальных центрах слабо проявляется активность валентных электронов, что и наблюдается как замедление брутто динамики синтеза.

Для реализации реального технологического процесса это явление не окажет существенного влияния на изменение динамики процесса получения волокнообразующих терсополимеров в промышленных условиях, так как для придания приемлемой термоокисляемости полученных из них ПАН волокон, используемых в дальнейшем как прекурсоров углеродных волокон, в сополимере должно содержаться не более 1-2 % (масс.) кислотного сомономера.

Выводы

Изучено влияние природы третьего кислотного сомономера на динамику синтеза волокнообразующих терсополимеров АН.

Показана принципиальная возможность синтеза волокнообразующих терсополимеров АН с карбоксилсодержащими мономерами в ДМФ.

Установлено, что замена АМПС на ИтК при синтезе волокнообразующих терсополимеров приводит к некоторому снижению интенсивности процесса терсополимеризации, что должно быть учтено при реализации технологического процесса синтеза поли(АН-со-МА-со-ИтК) в промышленных условиях.

Надійшла 30.09.2010

УДК 669.431.6:66.067.12

ДОСЛІДЖЕННЯ ПИЛОПРОНИКНОСТІ ФІЛЬТРУВАЛЬНИХ МАТЕРІАЛІВ ДЛЯ МЕТАЛУРГІЙНОЇ ПРОМИСЛОВОСТІ

Л.В. ПЕЛИК

Львівська комерційна академія.

Досліджено показники пилопроникності тканих і нетканих фільтрувальних матеріалів на основі термостійких волокон. Проаналізовано їх вплив на фільтрувальну здатність рукавних фільтрів, які використовуються для пилогазоочисних систем

Пилопроникність характеризує здатність фільтрувального матеріалу пропускати і утримувати у своїй структурі часточки пилу. Частинки пилу проникають через фільтрувальний матеріал в основному тим же шляхом, що і повітря: через наскрізні пори матеріалу[1]. Пил, при проходженні запиленого газового потоку через чисту тканину, осаджується в основному в результаті зіткнення частинок пилу з волокнами і нитками тканини і прилипання (притягання) частин до волокон – адгезія. Утримуються частинки пилу у структурі матеріалу за рахунок механічного зчеплення їх з нерівностями на поверхні волокон.