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LINEAR ALGEBRA IN GAME DEVELOPMENT
Kopenax bozoan
Kuiscoxuii nayionanvHuil yHisepcumem mexuHono2iti ma Ou3auHy

Hayxosuu xepienux — k. neo.n. I'arvuenxo O. FO.

Linear algebra is the study of vectors. If your game involves position,
direction and velocity of some object, you will have to use vectors. The better one
understand linear algebra, the more control you will have over the behavior of these
vectors.

In games, vectors are used to store positions, directions, and velocities. Here

are some 2-Dimensional examples:

e

(1.2)

Position Velocity Direction

A vector by itself is just a set of numbers - it is only given meaning by its
context. Position vector shows us that the spaceship is in the cell with coordinates (1,
2) from the initial point. Velocity vector indicates that in one time unit the spaceship
moves two cells up and three cells to the right. Finally, the direction vector tells us
that the ship is pointing to the right.

To add vectors together, you just add each component together separately. For
example: (2, 6) + (0, -5) = (2, 6-5) = (2, 1)

Why do we need to add vectors together? The most common application for
this is a physics integration. Let’s consider the mechanics of cannon projectile flight.
Projectile begins its movement from the (0, 1) point. In the moment of shot its speed

IS equals to (2, 2). So in the one unit of time the projectile will move two cells up and
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two cells to the right. Its velocity is equals to (0, -1) because the gravity is pulling it

down. You can see the result of projectile flight below:

- (2| 0) ~

2.|2) (2.1-2)

Projectile flight example

When we talk about vectors, we refer to individual numbers as scalars. For
example, (0, 1) is a vector, 3 is a scalar. In games, it is often useful to multiply a
vector by a scalar. For example, we can simulate basic air resistance by multiplying
the player's velocity by 0.7 every frame. To do this, we just multiply each component
of the vector by the scalar. If the player's velocity is (20, 30), the new velocity is:

0.7 * (20, 30) = (0.7 * 20, 0.7 * 30) = (14, 21).

Subtraction works in the same way as addition - subtracting one component at
a time. Vector subtraction is useful for getting a vector that points from one position
to another. For example, player needs to to know in which direction he should shoot
the enemy ship. To get the vector of the laser projectile we just subtract the player's

position from the enemy position: (3, 3) - (0, 1) = (3, 2)

Ao (3.3)

. a2

0, 1)
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Vector subtraction example

If we have a ship with velocity vector V (3, 2), we might also want to know
how fast it is going, in order to calculate how much fuel it should use. To do that, we
need to find the length (or magnitude) of vector V.

We can think of V as a right triangle with sides 3 and 2, and use the
Pythagorean theorem to find the hypotenuse.

So the length of a vector V with components (X, y) is sqrt(x*2+y”2). In our

case the length is 137%,

/4)

~13M2

%

Distance between our ships can be easily found by combining two operations
that we have already considered above: subtraction and length finding. Now we must
ensure that our weapons can shoot the enemy. First we should subtract the player's
position from the enemy position: (3, 3) - (0, 1) = (3, 2), then we just find the length
of the vector (3, 2) - 13"\,

A (3.3)

0.1
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Normalization

When we are dealing with directions, it is important that they have vector
length that equal to 1. This makes life a lot easier for us. For example, let's say there
IS a weapon pointing in the direction of (1, 0) that shoots a projectile at 40 m/s. What
Is the velocity of the projectile? Since the direction has length 1, we can just multiply
the direction and the projectile speed to get its velocity: (40, 0). If the direction vector
had any other length, we couldn't do this - the projectile would be too fast or too
slow.

A vector with a length of 1 is called "normalized”. So how do we set vector's
length to 1? We just divide each component by the vector's length. If we want to
normalize vector V with components (3, 4), we just divide each component by its
length, 5, to get (3/5, 4/5).

What is the dot product (written ¢)? To get the dot product of two vectors, we
multiply the components, and then add them together:

(a1, a2) « (b1, b2) = albl + a2b2

Mathematical expression of the dot product is looks like this:

A+B=|A||B|cos®

Where @O is «theta» - angle between vectors A and B. This expression allows
us to find this angle according to the next formula:

®=acos([AB]/[|A]|B|])or ®=acos( A B) for normalized vectors.

Let's consider following example. The viewing angle from the cockpit is 90°.
We want to ensure that our pilot can see the enemy ship from his cockpit. First, we
get the normalized vectors for the direction our pilot is facing (D), and the direction
from the pilot’s ship to the enemy (V). Then, we check the angle between them. If it

Is greater than 45° (half of the field of view), then the enemy ship is not seen.
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To applicate all this stuff in real game one may try to write a simple game
engine for action like old Battle City game with the logic describing basic game
physics.

REFERENCES

1. S. Roman Advanced Linear Algebra / Steven Roman. — (Springer).

2. G. Strang Linear Algebra and Its Applications / Gilbert Strang. — (4th
Edition). J. Hefferon Linear Algebra / Jim Hefferon. — (3d Edition).

3. J. Hefferon Linear Algebra / Jim Hefferon. — (3d Edition).

121



