Please use this identifier to cite or link to this item: https://er.knutd.edu.ua/handle/123456789/24493
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTian, Hangjuan-
dc.contributor.authorGuan, Ying-
dc.date.accessioned2023-09-07T09:45:35Z-
dc.date.available2023-09-07T09:45:35Z-
dc.date.issued2023-
dc.identifier.citationTian Hangjuan. CNKI-based ceramic ornamentation extraction and method research knowledge graph analysis / Tian Hangjuan, Guan Ying // Актуальні проблеми сучасного дизайну : збірник матеріалів V Міжнародної науково-практичної конференції, м. Київ, 27 квітня 2023 року. – У 2-х т. – Т. 1. – Київ : КНУТД, 2023. – С. 35-37.uk
dc.identifier.urihttps://er.knutd.edu.ua/handle/123456789/24493-
dc.description.abstractIn order to deeply analyze the development status and trend of machine learning and deep learning in ceramic ornament extraction, the bibliometric tool CiteSpace was used to visually analyze the relevant journal literature in CNKI from 2006 to 2023. The study finds that the research results of machine learning in this field are increasing year by year. The links between research units and scholars are relatively close. The research hotspots in this field mainly focus on algorithms such as object detection, image segmentation, feature fusion, and feature extraction. In the past decade, the research of machine learning in the direction of ceramic ornament extraction has developed rapidly.uk
dc.language.isoenuk
dc.publisherКиївський національний університет технологій та дизайнуuk
dc.subjectdeep learninguk
dc.subjectmachine learninguk
dc.subjectornamental extractionuk
dc.subjectCiteSpaceuk
dc.titleCNKI-based ceramic ornamentation extraction and method research knowledge graph analysisuk
dc.typeThesisuk
local.conference.locationКиїв-
local.conference.date2023-04-27-
local.conference.nameАктуальні проблеми сучасного дизайну-
local.conference.sectionМистецтвознавчі та культурологічні чинники дизайнуuk
Appears in Collections:Актуальні проблеми сучасного дизайну

Files in This Item:
File Description SizeFormat 
APSD_2023_V1_P035-037.pdf550,87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.