Please use this identifier to cite or link to this item: https://er.knutd.edu.ua/handle/123456789/18975
Title: Results of analysis of machine learning practice for training effective model of bankruptcy forecasting in emerging markets
Authors: Krasnyuk, Maxim
Tkalenko, Antonina
Krasniuk, Svitlana
Keywords: classical techniques
forecasting
enterprise
Issue Date: Apr-2021
Publisher: List Verlag. in Ullstein Buchverlage GmbH & Europäische Wissenschaftsplattform
Citation: Krasnyuk M. Results of analysis of machine learning practice for training effective model of bankruptcy forecasting in emerging markets / M. Krasnyuk, A. Tkalenko, S. Krasniuk // Multidisziplinäre Forschung: Perspektiven, Probleme und Muster der Sammlung wissenschaftlicher Arbeiten "ΛΌГOΣ" zu den Materialien der I internationalen wissenschaftlich-praktischen Konferenz, Wien, Republik Österreich, 9. April, 2021. – Band 1. – Wien-Vinnytsia : List Verlag. in Ullstein Buchverlage GmbH & Europäische Wissenschaftsplattform, 2021. – P. 28-30.
Abstract: All still existing classical techniques methods of assessing the financial stability of an enterprise have their own disadvantages and advantages. Therefore, today an important question arises about the development of such a complex multistage methodology of financial analysis and forecasting (hereinafter FAP), which would give a clear idea of the existing financial condition of the enterprise.
URI: https://er.knutd.edu.ua/handle/123456789/18975
Faculty: Інститут права та сучасних технологій
Department: Кафедра філології та перекладу (ФП)
Appears in Collections:Кафедра філології та перекладу (ФП)
Матеріали наукових конференцій та семінарів

Files in This Item:
File Description SizeFormat 
Wien_28-30.pdf270,92 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.